

AB Allen-Bradley

Power Ficy

700S High Performance AC Drive and
700H Adjustable Frequency AC Drive

Frame 12

450-560kW, 400V
700-900HP, 480V
630-800kW, 690V
700-900HP 600V

Hardware Service Manual

Important User Information

Solid state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls (Publication SGI-1.1 available from your local Rockwell Automation sales office or online at www.rockwellautomation.com/literature) describes some important differences between solid state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.
In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc. is prohibited.
Throughout this manual, when necessary we use notes to make you aware of safety considerations.

WARNING: Identifies information about practices or
circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.

Important: Identifies information that is critical for successful application and understanding of the product.

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you:

- identify a hazard
- avoid the hazard
- recognize the consequences

Shock Hazard labels may be located on or inside the equipment (e.g., drive or motor) to alert people that dangerous voltage may be present.

Burn Hazard labels may be located on or inside the equipment (e.g., drive or motor) to alert people that surfaces may be at dangerous temperatures.
Important User Information 1-2
Preface Who Should Use this Manual? P-1
What is in this Manual P-1
What is Not in this Manual P-1
Reference Materials P-2
Understanding Manual Conventions P-2
Additional Support Available on Internet P-3
General Precautions P-4
Chapter 1 Creating Fault Reports 1-2
Addressing 700S Hardware Faults 1-2
Addressing 700H Hardware Faults 1-4
Diagnostic Procedures by Symptom 1-5
Chapter 2 Viewing the 700H Diagnostic LED 2-1
Viewing the 700S Diagnostic LEDs 2-2
Performing Visual Inspections 2-4
Conducting Forward and Reverse Biased Diode Tests for Major Power Components. 2-4
Checking Fiber Optic Connections to the Gate Driver Boards 2-8
Conducting Gate Driver Board Measurements 2-8
Checking Rectifying Module (on AC Input Drives Only) 2-14
Checking the DC Bus Capacitors 2-17
Checking the Main Fan Inverters and Fans 2-18
Chapter 3 Torque Specifications 3-1
Removing Power from the Drive 3-3
Removing the DPI / HIM Assembly 3-5
Removing the 700S Phase II Control Assembly 3-6
Removing the 700S High Power Fiber Optic Interface Circuit Board 3-8
Removing the 700S Control Assembly Mounting Plate 3-10
Removing the 700H I/O Boards and Control Assembly 3-11
Removing the 700H Star Coupler Board 3-13
Removing the Covers from the Power Structures 3-15
Removing the 700S Voltage Feedback Circuit Board. 3-19
Removing the Gate Driver and Adapter Boards 3-21
Removing the Power Structures from the Drive Enclosure 3-25
Removing the Main Fans 3-26
Removing the ASIC Boards 3-27
Removing the Rectifying Boards 3-29
Removing the Left-Side Output Power Modules 3-30
Removing the Right-Side Output Power Modules and Rectifying Modules 3-33
Removing the Fan Inverters 3-37
Removing the DC Bus Capacitors 3-40
Chapter 4 Before Applying Power to the Drive 4-1
Testing with the External DC Power Supply Without Load (Optional) 4-2
Testing Without a Motor 4-3
Performing the Power Circuit Diagnostic Test on a 700S 4-3
Testing With the Motor 4-4
Appendix A Software Tools A-1
Service tools. A-2
Appendix B List of Schematic Diagrams. B-1
Appendix C Circuit Board Connections C-1
Hardware Connections C-10
Appendix D Disassembly/Assembly Diagrams and Spare Parts Numbers D-1

Overview

Who Should Use this Manual?

This manual is intended for qualified service personnel responsible for troubleshooting and repairing high power PowerFlex 700H and 700S AC Drives. You should have previous experience with, and basic understanding of electrical terminology, procedures, required troubleshooting equipment, equipment protection procedures and methods, and safety precautions.

This manual contains hardware service information for Frame 12 PowerFlex 700 H and 700 S drives only. Verify that you are working on a Frame 12 drive by checking the data nameplate on the Control Frame. The frame number is printed just above the serial number.

This manual does not contain in depth fault information for troubleshooting. That information is available in publications 20C-PM001, Programming Manual - PowerFlex 700H Adjustable Frequency AC Drive, PFLEX-IN006, Installation Instructions - PowerFlex 700S and 700H Adjustable Frequency AC Drive and 20D-UM006, User Manual - PowerFlex 700S with Phase II Control High Performance AC Drive.

Reference Materials

Understanding Manual Conventions

Allen-Bradley publications are available on the internet at www.rockwellautomation.com/literature.

The following publications provide general drive information.

Title	Publication
Wiring and Grounding Guide, (PWM) AC Drives	DRIVES-IN001...
Safety Guidelines for the Application, Installation and Maintenance of Solid State Control	SGI-1.1
A Global Reference Guide for Reading Schematic Diagrams	$0100-2.10$
Guarding Against Electrostatic Damage	$8000-4.5 .2$

The following publications provide specific PowerFlex drive information.

Title	Publication
Programming Manual - PowerFlex 700H AC Drive	20C-PM001...
User Manual - PowerFlex 700S with Phase II Control High Performance Drive	$20 \mathrm{D}-\mathrm{UM} 006 \ldots$
Installation Instructions - Hi-Resolution Feedback Option Card for PowerFlex 700S Drives	$20 \mathrm{D}-\mathrm{IN001..}$.
Installation Instructions - Multi Device Interface Option for PowerFlex $700 S$ Drives	$20 \mathrm{D}-$ IN004...
Installation Instructions - Main Control Board PowerFlex 700S Drives	20D-IN005...
Installation Instructions - Control Assembly Cover for PowerFlex 700S Drives	$20 \mathrm{D}-\mathrm{IN006} \mathrm{\ldots}$
Installation Instructions - PowerFlex 700S /700H High Power Maintenance Stand	20D-IN014...
Installation Instructions - PowerFlex 700S and 700H Drives	PFLEX-IN006...
Reference Manual - PowerFlex 700S with Phase II Control Adjustable Frequency Drives	PFLEX-RM003...

The following publications provide information that is necessary when applying the DriveLogix Controller.

Title	Publication
User Manual - DriveLogix System	$20 \mathrm{D}-\mathrm{UM} 002 \ldots$
Installation Instructions - DriveLogix Controller	$20 \mathrm{D}-$ IN002...
Installation Instructions - Memory Expansion for DriveLogix Controller	20D-IN007...
ControINet Daughtercard Installation Instructions	$1788-$ IN002...
ControlNet Daughtercard Installation Instructions	$1788-$ IN005...

Terms

The following words are used throughout the manual to describe an action:

Word	Meaning
Can	Possible, able to do something
Cannot	Not possible, not able to do something
May	Permitted, allowed
Must	Unavoidable, you must do this
Shall	Required and necessary
Should	Recommended
Should Not	Not recommended

Cross References

"Figure 2.2 on page 2-6" is a cross reference to figure 2.2 on page 5 of Chapter 2.
"Figure C .1 on page $\mathrm{C}-2$ " is a cross reference to figure C .1 on page 2 of Appendix C.

Additional Support Available on Internet

Additional troubleshooting information and software tools are available on the Allen-Bradley Drives Support Website (http://www.ab.com/support/ abdrives/).

General Precautions

Class 1 LED Product

ATTENTION: Hazard of permanent eye damage exists when using optical transmission equipment. This product emits intense light and invisible radiation. Do not look into module ports or fiber-optic cable connectors.

ATTENTION: The sheet metal cover and mounting screws on the ASIC Board located on the power structure are energized at (-) DC bus potential high voltage. Risk of electrical shock, injury, or death exists if someone comes into contact with the assembly.

ATTENTION: This drive contains ESD (Electrostatic Discharge) sensitive parts and assemblies. Static control precautions are required when installing, testing, servicing or repairing this assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with static control procedures, reference A-B publication 8000-4.5.2, "Guarding Against Electrostatic Damage" or any other applicable ESD protection handbook.

ATTENTION: An incorrectly applied or installed drive can result in component damage or a reduction in product life. Wiring or application errors, such as, undersizing the motor, incorrect or inadequate AC supply, or excessive ambient temperatures may result in malfunction of the system.

ATTENTION: Only qualified personnel familiar with high power PowerFlex 700S and 700H Drives and associated machinery should plan or implement the installation, start-up and subsequent maintenance of the system. Failure to comply may result in personal injury and/or equipment damage.

ATTENTION: To avoid an electric shock hazard, verify that the voltage on the bus capacitors has discharged before performing any work on the drive. Measure the DC bus voltage at the DC+ \& DC- terminals. The voltage must be zero.

ATTENTION: Potentially fatal voltages may result from improper usage of an oscilloscope and other test equipment. The oscilloscope chassis may be at a potentially fatal voltage if not properly grounded. If an oscilloscope is used to measure high voltage waveforms, use only a dual channel oscilloscope in the differential mode with X 100 probes. It is recommended that the oscilloscope be used in the A minus B Quasi-differential mode with the oscilloscope chassis correctly grounded to an earth ground.

Troubleshooting and Error Codes

ATTENTION: To avoid an electric shock hazard, ensure that all power to the drive has been removed before performing the following.

ATTENTION: To avoid an electric shock hazard, verify that the voltage on the bus capacitors has discharged before performing any work on the drive. Measure the DC bus voltage at the DC+ \& DC- terminals. The voltage must be zero.

ATTENTION: HOT surfaces can cause severe burns. Do not touch the heatsink surface during operation of the drive. After disconnecting power allow time for cooling.

ATTENTION: This drive contains ESD (Electrostatic Discharge) sensitive parts and assemblies. Static control precautions are required when installing, testing, servicing or repairing this assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with static control procedures, reference A-B publication 8000-4.5.2, "Guarding Against Electrostatic Damage" or any other applicable ESD protection handbook.

Creating Fault Reports

Clear and complete fault reports are critical for analysis and repair of modules returned to the factory.

At a minimum, perform and record the following:

- Record the contents of the fault queue (faults and times of occurrence)
- Make record of any burn marks on the rectifying module, DC-capacitors, inverter bridge, charging resistors, balancing/precharging resistors, printed circuit boards, bus bars, cabling and fiber-optic cabling
- Make record of any liquid and condensation marks on printed circuit boards, components and mechanical parts
- Make record of the amount of dust and other additional particles on drive and drive components
- Make record of any mechanical damage to the drive and drive components
- Record the size and type of main fuses
- Record any other important marks and damage

Addressing 700S Hardware Faults

Fault	No.	Description	Action (if appropriate)		
HiHp In PhaseLs	65	AC Input Phase Loss - AC voltage is not present on one or two input phases.	1. Check for voltage on each input phase. 2. Check the status of each external input fuses.		
HiHp Bus Com Dly	66	Bus Communication Time Delay - the processor has not received proper periodic feedback information.	Check fiber-optic connections between the Power Interface Circuit Board and Voltage Feedback Circuit Board.		
HiHp Bus Link LS	67	Bus Communication Link Loss - bus communication between the Power Interface Circuit Board and Voltage Feedback Circuit Board has halted.	Check fiber-optic connections between the Power Interface Circuit Board and Voltage Feedback Circuit Board.		
HiHp Bus CRC Er	68	Bus Communication CRC Error - too many Cycling Ring Checksum (CRC) errors have occurred in the communication bus.	Check fiber-optic connections between the Power Interface Circuit Board and Voltage Feedback Circuit Board.		
AiHp Bus WtchDog power cycle may cause the					
A00S Main Control Board to attempt					
to communicate with the ASIC Board					
before the ASIC Board is energized.				\quad	Wait five minutes before
:---					
re-energizing the drive.					

Fault	No.	Description	Action (if appropriate)
HiHp Drv OvrLoad	71	Drive Overload - the circuit board on the Power Module has detected an overload.	Measure output current of the drive. If the level is ever greater than the maximum drive rated output current level reduce the load. If the levels are always well below the drive rated levels, then replace the power module.
HiHp PwrBd PrcEr	72	Power Board Processor Error - a microprocessor on the Power Board has detected a communication error.	1. Check fiber-optic connections between the Power Interface Circuit Board and Voltage Feedback Circuit Board.
2. Check connections between			
the Main Control Board and			
the Power Interface Circuit			
Board.			

Addressing 700H Hardware Faults

Name	No.	Description	Action (if appropriate)
Auxiliary In	2	Auxiliary input interlock is open.	Check remote wiring.
Power Loss	3	DC bus voltage remained below parameter 186 [Power Loss Volts] for longer than parameter 185 [Power Loss Time]. Enable/Disable with parameter 238 [Fault Config 1]. For more information refer to publication 20C-PM001, Programming Manual PowerFlex 700H.	Monitor the incoming AC line for low voltage or line power interruption.
UnderVoltage	4	DC bus voltage fell below the minimum value of 333 V for $400 / 480 \mathrm{~V}$ drives and 461 V for $600 / 690 \mathrm{~V}$ drives. Enable/Disable with parameter 238 [Fault Config 1]. For more information refer to publication 20C-PM001, Programming Manual - PowerFlex 700H.	Monitor the incoming AC line for low voltage or power interruption.
OverVoltage	5	DC bus voltage exceeded maximum value.	Monitor the AC line for high line voltage or transient conditions. Bus overvoltage can also be caused by motor regeneration. Extend the decel time or install and external dynamic brake option.
Input Phase	17	One input line phase missing.	Check user-supplied fuses Check AC input line voltage.
OutPhasMissng	21	Zero current in one output motor phase.	Check motor wiring. Check motor for open phase.
Ground Fault	13	A current path to earth ground greater than 25% of drive rating. Ground fault level is 50% of the drive's heavy duty current rating. The current must appear for 800 ms before the drive will fault.	Check the motor and external wiring to the drive output terminals for a grounded condition.
InverterFault	14	Hardware problem in the power structure.	Cycle power. Replace drive.
System Fault	10	Hardware problem exists in the power structure.	Cycle power. Replace drive.
Load Loss	15	Do not use this fault in 700H applications	Check that parameter 238 [Fault Config 1] / bit 0 "Power Loss" and parameter 259 [Alarm Config 1] / bit 13 "Load Loss" are set to zero.
Precharge Error	31	The precharge function has failed to complete within 30 seconds (default) of the precharge request. The precharge time out is configurable by Par 410 [PreChrg TimeOut] A precharge request is initiated when the DC Bus voltage is above the Undervoltage Trip level and the precharge input is high (the requirement for the precharge being high can be bypassed by setting Par 411 [PreChrg Control] / bit 01 "PreChrg Enable" to be off.	Verify the value in parameter 410 [PreChrg TimeOut] Verify the bit value in parameter 411 [PreChrg Control] / bit 01 "PreChrg Enable".
Power Unit	70	One or more of the output transistors were operating in the active region instead of desaturation. This can be caused by excessive transistor current or insufficient base drive voltage.	Clear fault.

Diagnostic Procedures by Symptom

The following charts list drive symptoms, symptom descriptions and recommended actions.

Blown Input Fuses

Use this procedure when a drive clears any of its external circuit breaker or power fuses:

No Output Voltage

Use this procedure when there is no voltage present at the drive output terminals, even though the drive indicates the motor is running:

No HIM Display

Use this procedure when the HIM does not function:

Over-Temperature Faults

Use this procedure to troubleshoot drive over-temperature faults (14-Inv Otemp Pend and 15 - Inv Otemp Trip in 700S or 8 - Heatsink OvrTemp and 9 - Trnsistr OvrTemp in 700H):

Component Test Procedures

> ATTENTION: To avoid an electric shock hazard, ensure that all power to the drive has been removed before performing the following.

ATTENTION: To avoid an electric shock hazard, verify that the voltage on the bus capacitors has discharged before performing any work on the drive. Measure the DC bus voltage at the DC+ \& DC- terminals. The voltage must be zero.

ATTENTION: HOT surfaces can cause severe burns. Do not touch the heatsink surface during operation of the drive. After disconnecting power allow time for cooling.

ATTENTION: This drive contains ESD (Electrostatic Discharge) sensitive parts and assemblies. Static control precautions are required when installing, testing, servicing or repairing this assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with static control procedures, reference A-B publication 8000-4.5.2, "Guarding Against Electrostatic Damage" or any other applicable ESD protection handbook.

Viewing the 700H Diagnostic LED

The Control Assembly on 700H drives contains a diagnostic LED which is visible through the cover of the Control Assembly. the Control Assembly is located in the upper, left-hand drive enclosure.

ATTENTION: The Control Assembly LED is only operational when the drive is energized, and only visible with the door of the drive enclosure is open. Servicing energized equipment can be hazardous. Severe injury or death can result from electrical shock, burn or unintended actuation of controlled equipment. Follow Safety related practices of NFPA 70E, ELECTRICAL SAFETY FOR EMPLOYEE WORKPLACES. DO NOT work alone on energized equipment!

Viewing the 700S Diagnostic LEDs

The PowerFlex 700S contains a Run LED, controller LEDs, and SynchLink LEDs. These LEDs are only operational when the drive is energized and are only visible when the drive door is open. The status of these LEDs can also be viewed from the HIM or from an application program (e.g., DriveExplorer ${ }^{\mathrm{TM}}$) in parameter 554 [LED Status]. This feature is only available with DriveLogix version 15.03 or later.

Table C Drive Status Indicator Descriptions

		\#	Name	Color	State	Description
		1	PWR (Power)	Green	Steady	Illuminates when power is applied to the drive.
		(2)		Green	Flashing	Drive ready, but not running \& no faults are present.
			(Status)		Steady	Drive running, no faults are present.
				Yellow	Flashing	When running, a type 2 (non-configurable) alarm condition exists, drive continues to run. When stopped, a start inhibit exists and the drive cannot be started.
					Steady	A type 1 (user configurable) alarm condition exists, but drive continues to run.
				Red	Flashing	A fault has occurred.
					Steady	A non-resettable fault has occurred.
				Red/ Yellow	Flashing Alternately	The drive is in flash recovery mode. The only operation permitted is flash upgrade.
		3	PORT	Refer to the Communication Adapter User Manual		Status of DPI port internal communications (if present).
			MOD			Status of communications module (when installed).
			NET A			Status of network (if connected).
			NET B			Status of secondary network (if connected).
			SYNCHLINK	Green	Steady	The module is configured as the time keeper. or The module is configured as a follower and synchronization is complete.
				Green	Flashing	The follower(s) are not synchronized with the time keeper.
				Red	Flashing	The module is configured as a time master on SynchLink and has received time information from another time master on SynchLink.
			ENABLE	Green	On	The drive's enable input is high.
				Green	Off	The drive's enable input is low.

(1) SynchLink LEDS are located on the SynchLink daughtercard on the main circuit board in the control cassette.

Performing Visual Inspections Visually inspect the cooling tunnels and power structures before energizing the drive.

Inspecting the Cooling Tunnels

1. Remove the main cooling fans from the bottom of the power structures. Refer to Removing the Main Fans on page 3-26.
2. Inspect the tunnels. Clean the heatsinks and tunnels if necessary.

Inspecting the Power Structures

1. Remove the covers from the power structures. Refer to Removing the Covers from the Power Structures on page 3-15.
2. Check components for burn marks, breakage or foil delamination on circuit boards. Check all the boards on the power structures, including those on the Output Power Modules and the Rectifying Modules (if present).

Replace any of these components without further testing if they show evidence of burn marks, breakage or foil delamination.

Conducting Forward and Reverse Biased Diode Tests for Major Power Components

A forward biased diode test checks the semiconductor junctions between the terminals and measures the voltage drop across those junctions. To pass each test, the meter must display a voltage near 0.5 V . If the test finds a short, the meter will display ". 000 ." If the test finds an open circuit or reversed polarity, the meter will display ".0L" (zero load).

A reverse biased diode test should find an open circuit, and the meter should display ".0L" (zero load).

Forward biased test on PN-junction

Reverse biased test on PN-junction

1. Remove power from the drive. Refer to Removing Power from the Drive on page 3-3.
2. Disconnect all motor leads from the drive.
3. Conduct forward and reverse biased diode tests on the Rectifying Modules (if present).

Figure 2.1 Measurement Points for Forward and Reverse Diode Tests

Table 2.A Forward Biased Diode Tests on Rectifying Module for Power Structure \#1

Meter Leads		Nominal meter reading
-	+	
$\overline{\mathrm{DC}+/ \mathrm{R}+{ }^{(1)}}$	1L1	Meter should beep once and value should gradually rise to about 0.5 V
DC+/R+	1L2	
DC+/R+	1L3	
1L1	DC-	
1L2	DC-	
1L3	DC-	
(1) If the drive does not contain the brake chopper option, the $\mathrm{DC}+/ \mathrm{R}$ terminal will be labeled DC+.		

Table 2.B Forward Biased Diode Tests on Rectifying Module for Power Structure \#2

Meter Leads		Nominal meter reading
-	+	
$\overline{\mathrm{DC}}+/ \mathrm{R}+{ }^{(1)}$	2L1	Meter should beep once and value should gradually rise to about 0.5 V
DC+/R+	2L2	
DC+/R+	2L3	
2L1	DC-	
2L2	DC-	
2L3	DC-	
(1) If the drive does not contain the brake chopper option, the $\mathrm{DC}+/ \mathrm{R}$ terminal will be labeled $D C+$.		

Table 2.C Reverse Biased Diode Tests on Rectifying Module for Power Structure \#1

Meter Leads		Nominal meter reading
+	-	
1L1	DC-	Meter should display ".OL" (zero load)
1L2	DC-	
1L3	DC-	
$\overline{\mathrm{DC}+/ \mathrm{R}+{ }^{(1)}}$	1L1	
DC+/R+	1L2	
DC+/R+	1L3	

Table 2.D Reverse Biased Diode Tests on Rectifying Module for Power Structure \#2

Meter Leads		Nominal meter reading
+	-	
2L1	DC-	Meter should display ".OL" (zero load)
2L2	DC-	
2L3	DC-	
DC+/R+ ${ }^{(1)}$	2L1	
DC+/R+	2L2	
DC+/R+	2L3	
(1) If the drive does not contain the brake chopper option, the $\mathrm{DC}+/ \mathrm{R}+$ terminal will be labeled DC+.		

If the drive fails any of these measurements, replace the appropriate Rectifying Module.
4. Conduct forward and reverse biased diode tests on the Output Power Modules.

Table 2.E Forward Biased Diode Tests on Output Power Modules for Power Structure \#1

Table 2.F Forward Biased Diode Tests on Output Power Modules for Power Structure \#2

Meter Leads		Nominal meter reading
+	-	
DC-	2U/T1	Meter should display ".0L" (zero load)
DC-	2V/T2	
DC-	2W/T3	
2U/T1	$\mathrm{DC}+/ \mathrm{R}+{ }^{(1)}$	
2V/T2	DC+/R+	
2W/T3	DC+/R+	
(1) If the drive does not contain the brake chopper option, the $\mathrm{DC}+/ \mathrm{R}+$ terminal will be labeled $\mathrm{DC}+$.		

Table 2.G Reverse Biased Diode Tests on Output Power Modules for Power Structure \#1

Meter Leads		Nominal meter reading
+	-	
1U/T1	DC-	Meter should beep once and value should gradually rise to about 0.5 V
1V/T2	DC-	
1W/T3	DC-	
DC+/R+ ${ }^{(1)}$	1U/T1	
DC+/R+	1V/T2	
DC+/R+	1W/T3	

Table 2.H Reverse Biased Diode Tests on Output Power Modules for Power Structure \#2

Meter Leads		Nominal meter reading
+	-	
2U/T1	DC-	Meter should beep once and value should gradually rise to about 0.5 V
2V/T2	DC-	
2W/T3	DC-	
DC+/R+ ${ }^{(1)}$	2U/T1	
DC+/R+	2V/T2	
DC+/R+	2W/T3	
(1) If the drive does not contain the brake chopper option, the DC+/R terminal will be labeled DC+.		

If the drive fails any of these measurements, replace both Output Power Modules for the appropriate Power Structure.

Checking Fiber Optic Connections to the Gate Driver Boards

Damaged or improperly connected fiber optic cables can cause apparent Gate Driver Board malfunctions.

1. Remove power from the drive. Refer to Removing Power from the Drive on page 3-3.
2. Remove the covers from the power structures. Refer to Removing the Covers from the Power Structures on page 3-15.
3. On Power Structure \#1, locate the Gate Driver Board on the front of the power structure.

4. Verify the fiber optic cables are properly connected (refer to Figure B. 4 on page B-5, Figure B. 5 on page B- 6 , Figure B. 6 on page B-7 or Figure B. 7 on page B-8).
5. Disconnect the cables and inspect them for scratches and cracks.
6. Reconnect the cables, replacing any damaged cables.
7. Repeat steps 3-6 for Power Structure \#2.
8. Remove power from the drive. Refer to Removing Power from the Drive on page 3-3.
9. Remove the covers from the power structures. Refer to Removing the Covers from the Power Structures on page 3-15.

Gate Interface Resistance

Measure the gate interface resistance for each output power transistor. The resistance from each gate and collector pin to the branch emitter pin should be about 500 ohms. If any of the gate interfaces fails this test, replace the appropriate (left or right) Output Power Module per Power Structure.

Preparing the Drive for Active Measurements on the Gate Driver Boards

Important: This procedure requires special equipment and training. Only qualified and trained personnel should perform these procedures. If you do not have the special equipment, replace each Gate Driver Board to determine if the boards are malfunctioning.

1. Remove power from the drive. Refer to Removing Power from the Drive on page 3-3.
2. Remove the covers from the power structures. Refer to Removing the Covers from the Power Structures on page 3-15.
3. On Power Structure \#1, disconnect the fiber optic cables which connect the ASIC Board to the Gate Driver Board at the Gate Driver Board ends.
4. You may want to remove the fuses for the Main Fan Inverters in order to prevent them from running during these tests.

> ATTENTION: Running the drive without the Main Fan Inverters could cause the drive to overheat or fault. Possible equipment damage could occur. You must replace the fuses before running the drive.
5. Disconnect the $\mathrm{DC}+$ and DC - wires from the bus bars above the Gate Driver Board. These wires connect the DC bus to the circuit boards in the power structure.

ATTENTION: Running the drive with the DC bus wires disconnected will damage the ASIC Boards. You must reconnect these wires before running the drive.
6. Connect the minus (-) probe of the multimeter to the DC- wire. Make sure these DC+ and DC- connections are insulated from all objects.

7. Connect the High Voltage DC Test Power Supply to these wires.

ATTENTION: The sheet metal cover and mounting screws on the ASIC Boards located on the power structures are energized at (-) DC bus potential high voltage. Risk of electrical shock, injury, or death exists if someone comes into contact with the assembly. Servicing energized equipment can be hazardous. Severe injury or death can result from electrical shock, burn or unintended actuation of controlled equipment. Follow Safety related practices of NFPA 70E, ELECTRICAL SAFETY FOR EMPLOYEE WORKPLACES. DO NOT work alone on energized equipment!

ATTENTION: Certain pins in connectors X 7 and X 12 on the Gate Driver Boards will be energized at DC bus potential high voltage. Risk of electrical shock, personal injury or death, property damage, or economic loss exists if personnel or equipment comes into contact with these pins.
8. Set the current limit on the High Voltage DC Test Power Supply to less than or equal to 1A. Energize the Supply and increase its output to the drive's nominal DC bus voltage (650 V dc for drives with $380-500 \mathrm{~V}$ ac input or 775 V dc for drives with $600-690 \mathrm{~V}$ ac input).

Checking the Opto-Couplers

Class 1 LED Product

ATTENTION: Hazard of permanent eye damage exists when using optical transmission equipment. This product emits intense light and invisible radiation. Do not look into module ports or fiber-optic cable connectors.

1. On Power Structure \#1, locate the fiber optic receiver which transmits the signals for W High (WH) gate interface and connector X3 on the Gate Driver Board. X3 provides the gate interface for the WH output power transistor in the left-hand Output Power Module.
2. Measure the DC voltage at the WH gate and collector pins on X 3 with respect to DC -. It should be -15 V dc.

3. While shining an intense light (like a flashlight) into the fiber optic receiver for the WH cable, measure the DC voltage at the WH gate and collector pins on X 3 with respect to DC -. It should be +15 V dc. If the drive fails any of these tests, replace the fiber optic cable or the Gate Driver Board.
4. Repeat steps 3 and 4 with connector X 4 and the VH cable. X 4 provides the gate interface for the VH output power transistor in the left-hand Output Power Module. If the drive fails any of these tests, replace the Gate Driver Board.
5. Repeat steps 3 and 4 with connector X 5 and the UH cable. X 5 provides the gate interface for the UH output power transistor in the left-hand Output Power Module. If the drive fails any of these tests, replace the Gate Driver Board.
6. Repeat steps 3 and 4 with connector X 6 and the cables for WL, VL and UL. If the drive fails any of these tests, replace the Gate Driver Board.

7. Repeat steps 3 and 4 with connector X 8 and the WH cable. X 8 provides the gate interface for the WH output power transistor in the right-hand

Output Power Module. If the drive fails any of these tests, replace the Gate Driver Board.
8. Repeat steps 3 and 4 with connector X 9 and the VH cable. X 9 provides the gate interface for the VH output power transistor in the right-hand Output Power Module. If the drive fails any of these tests, replace the Gate Driver Board.
9. Repeat steps 3 and 4 with connector X10 and the cables for WL, VL and UL. If the drive fails any of these tests, replace the Gate Driver Board.
10. Repeat steps 1-9 for Power Structure \#2.
11. Reconnect the DC+ and DC- wires on the bus bars above the Gate Driver Board on both Power Structures (Refer to Step 4 on page 2-10).
ATTENTION: Running the drive with the DC bus wires
disconnected will damage the ASIC Boards. You must reconnect
these wires before running the drive.

Figure 2.2 Opto-Coupler Checks for Left-Hand Output Power Module

Figure 2.3 Opto-Coupler Checks for Right-Hand Output Power Module

Checking Rectifying Module (on AC Input Drives Only)

Important: This procedure requires special equipment and training. Only qualified and trained personnel should perform these procedures.

1. Remove power from the drive. Refer to Removing Power from the Drive on page 3-3.
2. Remove the covers from the power structures. Refer to Removing the Covers from the Power Structures on page 3-15.
3. On Power Structure \#1, visually inspect the pre-charging resistors. If pre-charging resistors are damaged:
A. Replace the Rectifying Module (See Removing the Right-Side Output Power Modules and Rectifying Modules on page 3-33).
B. Check the capacitors, rectifiers and external connections for short-circuits. (See Checking the DC Bus Capacitors on page 2-17)
C. Check the Output Power Modules (See Conducting Forward and Reverse Biased Diode Tests for Major Power Components on page 2-4).
4. Verify that the plugs on the cable that connects X13 on the Rectifying Board to X2 on the ASIC Board are properly seated.
5. Verify that the jumper at X 50 on the Rectifying board is in place.

Taking Measurements on the Rectifying Module

6. Disconnect connectors X13, X12, X11 and X10.
7. Perform resistance measurements, using a digital multimeter, on the points listed in Table 2.I on page 2-15 (on AC Three-Phase drives). These points are on the back of the X10, X11 and X12 plugs which you have disconnected from the board. If the Rectifying Module fails any of these tests, replace it (See Removing the Right-Side Output Power Modules and Rectifying Modules on page 3-33).

Table 2.I Rectifying Module Resistance Measurements

Measurement points	Resistance
X10: red to X10: black	
X11: red to X11: black	$18 \Omega \pm 1 \Omega$
X12: red to X12: black	

8. Without applying power to X 13 verify that there is no resistance between the following points: J 3 and $\mathrm{X} 9, \mathrm{~J} 7$ and X 9 , and J 11 and X 9 . Refer to Rectifying Board Charge Relay Test Results on page 2-16. If the Rectifying Module fails any of these tests, replace it (See Removing the Right-Side Output Power Modules and Rectifying Modules on page 3-33).
9. Connect the DC Test Power Supply to X13 (positive to pin 5 and common to pin 1). Raise the output of the DC Test Power Supply to 24 V dc.

Important: Power supply polarity is critical during these tests. Reversing the polarity will damage components on the circuit board.
10. Verify that the voltage and resistance between the following points is zero: J3 and X10: Pin 1, J7 and X11: Pin 1, and J11 and X12: Pin 1. Refer to Rectifying Board Charge Relay Test Results on page 2-16. If the Rectifying Module fails any of these tests, replace it (See Removing the Right-Side Output Power Modules and Rectifying Modules on page 3-33).
11. Repeat steps 3-10 for Power Structure \#2.

Figure 2.4 Rectifying Board Layout and Measurement Points

Table 2.J Rectifying Board Charge Relay Test Results

No Power on X13			24 V dc Power on X13		
Meter Leads		Results	Meter Leads		Results
+	-		+	-	
J3	X9	0Ω	J3	X10: Pin 1	$0 \Omega / 0 \mathrm{~V}$
J7	X9		J7	X11: Pin 1	
J11	X9		J11	X12: Pin 1	

Checking the DC Bus Capacitors

Important: This procedure requires special equipment and training. Only qualified and trained personnel should perform these procedures.

These tests require the recommended high voltage DC-power supply.

1. Remove power from the drive. Refer to Removing Power from the Drive on page 3-3.
2. Remove the covers from the power structures. Refer to Removing the Covers from the Power Structures on page 3-15.
3. Set the current limit of the DC power supply to less than 50 mA .
4. On Power Structure \#1, connect the power supply's DC+ to the drive's DC+ terminal and the power supply's DC- to the drive's DC- terminal.
5. Set the power supply voltage setting to zero.
6. Switch on the external DC power supply.
7. Slowly increase the external DC power supply output voltage to the drive's nominal DC bus voltage (650 V dc for drives with $380-500 \mathrm{~V}$ ac input or 775 V dc for drives with $600-690 \mathrm{~V}$ ac input).
8. Monitor the current while testing.
9. Leakage current should be less than 3 mA when voltage has stabilized.
10. Abort test if current leakage is significantly higher when voltage has stabilized.
11. Decrease the DC power supply output voltage to zero. Wait until DC bus voltage has decreased to zero. Switch off the external DC power supply.
12. As a precaution, use a resistor to discharge each capacitor after testing. Use a resistor with the proper resistance and power handling capability for the discharge current.
13. If any capacitor has failed. Replace all the capacitors in the same series connection (See Removing the DC Bus Capacitors on page 3-40).
14. Repeat steps 3-13 for Power Structure \#2.

Checking the Main Fan Inverters and Fans

Checking Inverter LEDs

A frame 12 drive has four fans and four fan inverters; two fans and two fan inverters per Power Structure. Each fan inverter has a red and a green diagnostic LED.

| ATTENTION: The inverter LEDs are only operational when |
| :--- | :--- |
| the drive is energized, and only visible with the covers removed |
| from the power structure. Servicing energized equipment can be |
| hazardous. Severe injury or death can result from electrical |
| shock, burn or unintended actuation of controlled equipment. |
| Follow Safety related practices of NFPA 70E, ELECTRICAL |
| SAFETY FOR EMPLOYEE WORKPLACES. DO NOT work |
| alone on energized equipment! |

Checking Fan Inverter Fuses

A pair of fuses (F1 and F2) feed DC Bus power to both inverters on each Power Structure. Locate these fuses and, using a multi-meter, verify that they are not open.

Isolating a Faulty Fan Inverter

The ASIC Board (one on each of the Power Structures) controls a pair of fan inverters. A cable connects X11 on the ASIC Board to X8 on the left-hand fan inverter. Another cable connects X3 of the left-hand fan inverter to X 8 on the right-hand fan inverter. A jumper terminates X 3 on the right-hand fan inverter. Refer to Figure B. 8 on page B-9. Use the following procedure to isolate a faulty fan inverter if the fans are not running:

1. On Power Structure \#1, disconnect the cable from X3 of the left-hand inverter.
2. Remove the jumper from X 3 of the right-hand inverter, and connect it to X3 of the left-hand inverter.
3. Energize the drive. If the left-hand fan runs, then the right-hand fan inverter is faulty.
4. Repeat steps 1-3 for Power Structure \#2.

Checking the Main Fan Motors

1. Remove power from the drive. Refer to Removing Power from the Drive on page 3-3.
2. Remove the covers from the power structures. Refer to Removing the Covers from the Power Structures on page 3-15.
3. On Power Structure \#1, disconnect the left-hand fan motor from its inverter.
4. Measure the resistance of the fan windings. If the resulting measurements are not similar to those in Table 2.K below, replace the fan (See Removing the Main Fans on page 3-26).

Table 2.K Correct Fan Measurements

Connection Wires	Resistance $\pm 5 \%$
Black-Brown	60
Brown-Blue	26
Blue-Black	34
Resistance to ground	.0 L (Zero Load)

5. Reconnect the left-hand fan motor to its inverter.
6. Repeat steps 3 and 4 for the right-hand fan motor.
7. Repeat steps 3-6 for Power Structure \#2.

Notes:

Access Procedures

ATTENTION: To avoid an electric shock hazard, ensure that all power to the drive has been removed before performing the following.

ATTENTION: To avoid an electric shock hazard, verify that the voltage on the bus capacitors has discharged before performing any work on the drive. Measure the DC bus voltage at the DC+ \& DC- terminals. The voltage must be zero.

ATTENTION: The sheet metal cover and mounting screws on the ASIC Board located on the power structure are energized at (-) DC bus potential high voltage. Risk of electrical shock, injury, or death exists if someone comes into contact with the assembly.

ATTENTION: HOT surfaces can cause severe burns. Do not touch the heatsink surface during operation of the drive. After disconnecting power allow time for cooling.

ATTENTION: Hazard of permanent eye damage exists when using optical transmission equipment. This product emits intense light and invisible radiation. Do not look into fiber-optic ports or fiber-optic cable connectors.

ATTENTION: This drive contains ESD (Electrostatic Discharge) sensitive parts and assemblies. Static control precautions are required when installing, testing, servicing or repairing this assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with static control procedures, reference A-B publication 8000-4.5.2, "Guarding Against Electrostatic Damage" or any other applicable ESD protection handbook.

Torque Specifications

The following table lists fastener torque specifications:

Item	Screw	Final Torque
DPI / HIM Assembly Door	(\$) M3 x 6 Phillips®	$\begin{aligned} & 0.9 \mathrm{~N}-\mathrm{m} \\ & (8 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$
DPI / HIM Assembly (mounting)	(1) M3 $\times 6$ Phillips	$\begin{aligned} & 0.9 \mathrm{~N}-\mathrm{m} \\ & (8 \mathrm{lb} . \mathrm{in} .) \end{aligned}$
700S High Power Fiber Optic-Interface Circuit Board (mounting)	(5) M3 $\times 6$ Phillips	$\begin{aligned} & 0.9 \mathrm{~N}-\mathrm{m} \\ & (8 \mathrm{lb} . \mathrm{in} .) \end{aligned}$
700 H I/O and Control Assembly	(닥) M4 $\times 8$ self-tapping	$\begin{aligned} & 0.8 \mathrm{~N}-\mathrm{m} \\ & (7 \mathrm{lb} . \mathrm{in} .) \end{aligned}$

Item	Screw		Final Torque
700 H Star Coupler Board (mounting)		M4 x 8 POZIDRIV ®	$\begin{aligned} & \hline 0.9 \mathrm{~N}-\mathrm{m} \\ & (8 \mathrm{lb} . \mathrm{in} .) \end{aligned}$
700S Voltage Feedback Circuit Board (mounting)	(8)	M3 $\times 6$ Phillips	$\begin{aligned} & 0.9 \mathrm{~N}-\mathrm{m} \\ & (8 \mathrm{lb} . \mathrm{in} .) \end{aligned}$
AC Input Terminals on Power Structure	$\langle\bigcirc\rangle$	M10 nut	$\begin{aligned} & 40 \mathrm{~N}-\mathrm{m} \\ & (354 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$
Motor Output Terminals on Power Structure	(1)	M8 x 20 hexagonal screw	$\begin{aligned} & 20 \mathrm{~N}-\mathrm{m} \\ & (177 \mathrm{lb} . \mathrm{in} .) \end{aligned}$
Main Fan (Mounting)		M6 x 20 POZIDRIV	$\begin{aligned} & 3 \mathrm{~N}-\mathrm{m} \\ & \text { (27 lb.-in.) } \end{aligned}$
Main Fan		M4 x 8 POZIDRIV	$\begin{aligned} & 1.7 \mathrm{~N}-\mathrm{m} \\ & (15 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$
Touch Cover (Main Fan)		M5 x 16	$\begin{aligned} & 3 \mathrm{~N}-\mathrm{m} \\ & (27 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$
ASIC Fan		M 4×16 POZIDRIV	$\begin{aligned} & 0.4 \mathrm{~N}-\mathrm{m} \\ & (3.5 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$
Rectifier board (Mounting)	(4)	M4 x 8 POZIDRIV	$\begin{aligned} & 1 \mathrm{~N}-\mathrm{m} \\ & (9 \mathrm{lb} . \mathrm{in} .) \end{aligned}$
Output Power Module Output Terminals (U,V,W)	(1)	M8 x 20 hexagonal screw	$\begin{aligned} & 14 \mathrm{~N}-\mathrm{m} \\ & (124 \mathrm{lb} . \mathrm{in} .) \end{aligned}$
Rectifying Module Input Terminals (L1,L2,L3)	(1)	M10 $\times 20$ hexagonal screw	$\begin{aligned} & 12 \mathrm{~N}-\mathrm{m} \\ & (106 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$
Y-Bus Bar	$\langle\bigcirc\rangle$	M10 nut	$\begin{aligned} & 40 \mathrm{~N}-\mathrm{m} \\ & (354 \mathrm{lb} . \mathrm{in} .) \end{aligned}$
Capacitor		M4 x 8 self tapping	$\begin{aligned} & 1 \mathrm{~N}-\mathrm{m} \\ & (9 \mathrm{lb} . \mathrm{in} .) \end{aligned}$
Capacitor Bus Bar		M6 x 16 POZIDRIV	$\begin{aligned} & 4 \mathrm{~N}-\mathrm{m} \\ & (35 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$
Capacitor Bus Bar	(5)	M6 x 20 POZIDRIV	$\begin{aligned} & 4 \mathrm{~N}-\mathrm{m} \\ & (35 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$
DC- / DC+ Terminals		M6 x 20 POZIDRIV	$\begin{aligned} & 5 \mathrm{~N}-\mathrm{m} \\ & (44 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$
Block (Mounting)	0	M10 x 12 hexagonal screw	$\begin{aligned} & 20 \mathrm{~N}-\mathrm{m} \\ & \text { (177 lb.-in.) } \end{aligned}$
$700 S$ Voltage Feedback Circuit Board (mounting)	\square	M3 x 0.5 thread $-37 \mathrm{~mm} x$ 37 mm hex standoff	$\begin{aligned} & 0.9 \mathrm{~N}-\mathrm{m} \\ & (8 \mathrm{lb} . \mathrm{in} .) \end{aligned}$

POZIDRIV ${ }^{\circledR}$ is a registered trademark of the Phillips Screw Company
Phillips ${ }^{\circledR}$ is a registered trademark of Phillips Screw Company

Understanding the Torque Figures in Assembly Diagrams

Icons and numbers in the assembly diagrams indicate how to tighten hardware:

Removing Power from the Drive

\triangle
ATTENTION: To avoid an electric shock hazard, verify that the voltage on the bus capacitors has discharged before performing any work on the drive. Measure the DC bus voltage at the $\mathrm{DC}+\&$ DC- terminals. The voltage must be zero.

Remove power before making or breaking cable connections. When you remove or insert a cable connector with power applied, an electrical arc may occur. An electrical arc can cause personal injury or property damage by:

- sending an erroneous signal to your system's field devices, causing unintended machine motion
- causing an explosion in a hazardous environment

Electrical arcing causes excessive wear to contacts on both the module and its mating connector. Worn contacts may create electrical resistance.

Removing Power

1. Turn off and lock out input power. Wait five minutes.
2. Verify that there is no voltage at the drive's input power terminals.
3. Measure the DC bus voltage at the $\mathrm{DC}+\& \mathrm{DC}$ - terminals on the Power Terminal Block. The voltage must be zero.

Removing the DPI / HIM
 Assembly

Removal

1. Remove power from the drive (Removing Power from the Drive on page 3-3).

Important: Before removing connections and wires, mark the connections and wires to avoid incorrect wiring during assembly.
2. Remove the two screws from front of DPI / HIM assembly.

3. Open the door, which holds the DPI interface and HIM.
4. Unplug the DPI cable from X2 connector on the DPI Interface Circuit Board.

5. On 700S drives only, unplug the cable from X 4 connector on the circuit board.
6. Remove the four mounting screws and the assembly from the Control

Frame.

Installation

Install the DPI / HIM Assembly in reverse order of removal, while referring to Torque Specifications on page 3-1.

Removing the 700 S Phase II
Control Assembly

Removal

1. Remove power from the drive (Removing Power from the Drive on page 3-3).

Important: Before removing connections and wires, mark the connections and wires to avoid incorrect wiring during assembly.
2. Unplug any fiber optic ControlNet and SynchLink cables from the Control Assembly.

ATTENTION: Hazard of permanent eye damage exists when using optical transmission equipment. This product emits intense light and invisible radiation. Do not look into fiber-optic ports or fiber-optic cable connectors.

Important: Minimum inside bend radius for SynchLink and ControlNet fiber-optic cable is 25.4 mm (1 in .). Any bends with a shorter inside radius can permanently damage the fiber-optic cable. Signal attenuation increases with decreased inside bend radii.
3. Unplug any remaining I/O and communications cables from the Control Assembly and set them aside.
4. Loosen the captive screw on the Control Assembly mounting plate and swing the Control Assembly away from drive.

5. Carefully disconnect the ribbon cables from the sockets on the High Power Fiber Optic Interface Circuit Board on the back of the control mounting plate, and carefully set them aside.

6. Loosen the two mounting screws on the front of the Control Assembly and slide the control cassette off the mounting bracket.

Installation

Install the 700S Phase II Control Assembly in reverse order of removal, while referring to Torque Specifications on page 3-1.

Removing the 700 S High
 Power Fiber Optic Interface Circuit Board

Removal

1. Remove power from the drive (Removing Power from the Drive on page 3-3).
2. Remove the 700S Control Assembly (Removing the 700S Phase II Control Assembly on page 3-6).
3. Carefully disconnect the fiber-optic cables from the sockets along the right side of the High Power Fiber Optic Interface Circuit Board (on the backside of the Control Assembly), and carefully set them aside.

ATTENTION: Hazard of permanent eye damage exists when using optical transmission equipment. This product emits intense light and invisible radiation. Do not look into fiber-optic ports or fiber-optic cable connectors.

Important: Minimum inside bend radius for fiber-optic cable is 25.4 mm (1 in.). Any bends with a shorter inside radius can permanently damage the fiber-optic cable. Signal attenuation increases with decreased inside bend radii.
4. Disconnect the other cables from the sockets on the High Power Fiber Optic Interface Circuit Board and set them aside.
5. Remove the five screws which secure the High Power Fiber Optic Interface Circuit Board to the Control Frame.

6. Remove the circuit board from the Control Frame.

Installation

Install the 700S High Power Fiber Optic Interface Circuit Board in reverse order of removal, while referring to Torque Specifications on page 3-1.

Removing the 700S Control
 Assembly Mounting Plate

Removal

1. Remove power from the drive. Refer to Removing Power from the Drive on page 3-3.
2. Remove the 700S Phase II Control Assembly. Refer to Removing the 700S Phase II Control Assembly on page 3-6.
3. Remove the 700S High Power Fiber Optic Interface Circuit Board.

Refer to Removing the 700S High Power Fiber Optic Interface Circuit Board on page 3-8.
4. Lift the Control Assembly mounting plate up and off the hinge.

Installation
Install the 700S Control Assembly mounting plate in reverse order of removal.

Removing the 700 H I/O
 Boards and Control Assembly

Removal

1. Remove power from the drive. Refer to Removing Power from the Drive on page 3-3.
2. Open the enclosure that contains the Control and I/O Boards and carefully unplug the DPI cable and any I/O cables.
3. Remove the I/O Boards from the Control Board and enclosure. Note the order of the boards and the keys which prevent placement of boards in incorrect slots.

4. Unplug the serial connection from X 7 of the Control Board.

5. Remove the three screws which secure the Control Assembly to the drive.

> Do not remove enclosure cover. Enclosure is illustrated without the cover for clarity.

6. Remove the Control Assembly.

Installation

Install the 700 H Control and I/O Boards in reverse order of removal, while referring to Torque Specifications on page 3-1.

Removing the 700H Star Coupler Board

Removal

1. Remove power from the drive. Refer to Removing Power from the Drive on page 3-3.
2. Referring to Removing the 700 H I/O Boards and Control Assembly on page 3-11, remove the I/O boards and Control Assembly.
3. Move the Control Frame to expose its back, while referring to Removing the Covers from the Power Structures on page 3-15.
4. Disconnect the control power cable from X 2 of the Star Coupler Board.

5. Carefully disconnect the fiber-optic cables from right side of the Star Coupler Board, and carefully set them aside.

ATTENTION: Hazard of permanent eye damage exists when using optical transmission equipment. This product emits intense light and invisible radiation. Do not look into fiber-optic ports or fiber-optic cable connectors.

Important: Minimum inside bend radius for fiber-optic cable is 25.4 mm (1 in.). Any bends with a shorter inside radius can permanently damage the fiber-optic cable. Signal attenuation increases with decreased inside bend radii.
6. Remove the six screws which secure the Star Coupler Board to the stand-offs on the back of the Control Frame.

7. Remove the Star Coupler Board from the Control Frame.

Installation

Install the 700H Star Coupler Board in reverse order of removal, while referring to Torque Specifications on page 3-1.

Removing the Covers from Moving the Control Frame the Power Structures
 Removal

1. Remove power from the drive (Removing Power from the Drive on page 3-3).
2. Loosen the T8 Torx-head screws, which secure the Control Frame to the drive enclosure.
3. Swing the Control Frame out and away from the power structure.

Installation
Install the Control Frame in reverse order of removal, while referring to Torque Specifications on page 3-1.

Removing the Airflow Plates

The drive is equipped with metal plates, at the top of both enclosures, that manage airflow through the drive. You must remove these plates in order to access the protective covers.

Removal

1. Remove power from the drive (Removing Power from the Drive on page 3-3).
2. Move the Control Frame away from the power structure in the left-hand enclosure (Removing the Covers from the Power Structures on page 3-15).

3. On Power Structure 1, remove the T8 Torx-head screws (four per plate) that secure the airflow plate to the drive.
4. Slide the airflow plate off of the drive.
5. Repeat steps 3 and 4 to remove the airflow plate from Power Structure 2.

Installation
Install the Airflow Plates in reverse order of removal, while referring to Torque Specifications on page 3-1.

Removing the Protective Covers from the Power Structures

You must remove the protective covers to gain access to the power structures.

Removal

1. Remove power from the drive (Removing Power from the Drive on page 3-3).
2. Move the Control Frame away from the power structure in the left-hand enclosure (Removing the Covers from the Power Structures on page 3-15).
3. Remove the Airflow Plates (Removing the Airflow Plates on page 3-16).
4. On Power Structure 1, remove the four M5 Pozi-drive screws, which secure the top and bottom protective covers to the main front protective cover, then remove the top and bottom protective covers.

Note: you only need to remove the top and bottom covers to gain access to the power terminals. You can remove the other covers without removing the top and bottom ones
5. Remove the four M5 Pozi-drive screws, which secure the main front protective cover to the drive, then remove the protective cover.
6. Remove the side protective covers.
7. Repeat step 4-6 to remove the protective covers from Power Structure 2.

Installation
Install the Protective Covers in reverse order of removal, while referring to Torque Specifications on page 3-1.

Removing the 700S Voltage
Feedback Circuit Board

Removal

1. Remove power from the drive (Removing Power from the Drive on page 3-3).
2. Remove the covers from the power structures. Refer to Removing the Covers from the Power Structures on page 3-15.
3. Carefully disconnect the fiber-optic cables from J 4 and J 5 sockets along the top of the Voltage Feedback Circuit Board, and carefully set them aside.

ATTENTION: Hazard of permanent eye damage exists when using optical transmission equipment. This product emits intense light and invisible radiation. Do not look into fiber-optic ports or fiber-optic cable connectors.

Important: Minimum inside bend radius for fiber-optic cable is 25.4 mm (1 in.). Any bends with a shorter inside radius can permanently damage the fiber-optic cable. Signal attenuation increases with decreased inside bend radii.
4. Disconnect the cable from J 8 socket of the Voltage Feedback Circuit Board, and set it aside.

5. Remove the five screws which secure the Voltage Feedback Circuit Board to the drive.
6. Remove the circuit board from the drive.

Install the 700S Voltage Feedback Circuit Board in reverse order of removal, while referring to Torque Specifications on page 3-1.

Removing the Gate Driver
 and Adapter Boards

Removal

1. Remove power from the drive (Removing Power from the Drive on page 3-3).
2. Remove the covers from the power structures. Refer to Removing the Covers from the Power Structures on page 3-15.
3. On Power Structure 1, disconnect the wires from the fuse block that holds the fuses for the Fan Inverters. Then remove the fuses.
4. Remove the screws that secure the fuse block to the bracket beneath it, and remove the fuse block.
5. Carefully disconnect the fiber-optic cables from sockets along the top of the Gate Driver Board, and carefully set them aside.

ATTENTION: Hazard of permanent eye damage exists when using optical transmission equipment. This product emits intense light and invisible radiation. Do not look into fiber-optic ports or fiber-optic cable connectors.

Important: Minimum inside bend radius for fiber-optic cable is 25.4 mm (1 in.). Any bends with a shorter inside radius can permanently damage the fiber-optic cable. Signal attenuation increases with decreased inside bend radii.
6. Disconnect the other cables from sockets of the Gate Driver Board, and set them aside.
7. Remove the six screws which secure the brackets to the drive. Then remove the brackets.

8. Remove eight of the stacker connectors from the Gate Driver Board, leaving the two connectors that are third from the top.

9. Carefully remove the board and the remaining connectors.

10. Remove the cable ties that secure the Adapter Board to the circuit boards on the Output Power Modules, and remove the Adapter Board.
11. Repeat steps 3-10 to remove the Gate Driver and Adapter Boards from Power Structure 2.

Installation

1. On Power Structure 1, replace the Adapter Board and install the cable ties, which secure it to the circuit boards on the Output Power Modules.
2. Plug the old stacker connectors into the new Gate Driver Board so the pins do not protrude through the connectors on the back of the board.
3. Align the Gate Driver Board so that its connectors align with the mating connectors on the Adapter Board.
4. While supporting the Adapter Board from behind, press the Gate Driver Board onto it.
5. Verify the proper alignment of the mounting with a mirror. Verify that none of the pins in the stacker connectors have missed the mating connectors.
6. Install the brackets, and install and tighten the mounting screws.
7. Connect all of the cables on the new Gate Driver Board.
8. Repeat steps 1-7 to install the Gate Driver and Adapter Boards on Power Structure 2.

Removing the Power Structures from the Drive Enclosure

Removal

1. Remove power from the drive (Removing Power from the Drive on page 3-3).
2. Remove the covers from the power structures. Refer to Removing the Covers from the Power Structures on page 3-15.
3. On Power Structure 1, remove the motor wiring from the power structure at the front of the power structure.
4. Remove the ground connection from the lower right rear corner of the power structure.
5. Remove the input (AC or DC) and brake wiring (if equipped) from the incoming terminals at the top of the power structure.

6. Follow the instructions in publication PFLEX-IN014, Installation Instructions - PowerFlex 700S $/ 700 H$ High Power Maintenance Stand, to install the Maintenance Stand. Remove the power structure by sliding it onto the rails of the Maintenance Stand.

Note: The Maintenance Stand is designed for removing power structures from drives supplied in Rittal TS8 enclosures. Alternate means of removal will be necessary for other types of enclosures.
7. Repeat steps 3-6 to remove Power Structure 2 from its enclosure.

Installation

Install the power structures in reverse order of removal, while referring to Torque Specifications on page 3-1. Refer to the publication PFLEX-IN006..., Installation Instructions - PowerFlex 700S and 700H High Power Drives, for tightening torques of motor terminations.

Removing the Main Fans

Removal

1. Remove power from the drive (Removing Power from the Drive on page 3-3).
2. Remove the covers from the power structures. Refer to Removing the Covers from the Power Structures on page 3-15.
3. On Power Structure 1, disconnect the fan cable connectors under the power structure.
4. Remove the two screws that secure each fan assembly to the drive. Then remove the fans.

5. Repeat steps 3 and 4 to remove the main fans from Power Structure 2 .

Installation

Install the fans in reverse order of removal, while referring to Torque Specifications on page 3-1.

Removing the ASIC Boards Removal

ATTENTION: The sheet metal cover and mounting screws on the ASIC Boards located on the power structures are energized at (-) DC bus potential high voltage. Risk of electrical shock, injury, or death exists if someone comes into contact with the assembly.

1. Remove power from the drive (Removing Power from the Drive on page 3-3).
2. Remove the covers from the power structures. Refer to Removing the Covers from the Power Structures on page 3-15.
3. On Power Structure 1, remove the cover from the ASIC assembly and the - DC bus connection from the cover.
4. Unplug the fan that mounts on the cover from connector X 1 of the ASIC board.
5. Disconnect the Feedback board that mounts on the ASIC assembly cover from connector X26 on the ASIC board.

6. Carefully disconnect the fiber-optic cables from sockets of the ASIC Board, and carefully set them aside.

ATTENTION: Hazard of permanent eye damage exists when using optical transmission equipment. This product emits intense light and invisible radiation. Do not look into fiber-optic ports or fiber-optic cable connectors.

Important: Minimum inside bend radius for fiber-optic cable is 25.4 mm (1 in.). Any bends with a shorter inside radius can permanently damage the fiber-optic cable. Signal attenuation increases with decreased inside bend radii.
7. Disconnect the other cables from sockets on the front of the ASIC Board, and set them aside.
8. Remove the fan from the ASIC Board.

9. Slide the ASIC Board assembly out of its chassis.
10. Remove the plastic board holder.
11. Repeat steps 3-10 to remove the ASIC Board from Power Structure 2.

Installation

Install the ASIC Boards in reverse order of removal, while referring to Torque Specifications on page 3-1. Reconnect cables to ASIC Boards, while referring to (refer to Figure B. 3 on page B-4).

Removing the Rectifying Boards

Removal

1. Remove power from the drive (Removing Power from the Drive on page 3-3).
2. Remove the covers from the power structures. Refer to Removing the Covers from the Power Structures on page 3-15.
3. On Power Structure 1, disconnect all the wiring from the Rectifying Board and carefully set it aside.
4. Remove the screws that secure the circuit board to the Rectifying Module, and remove the board.
5. Repeat steps 3 and 4 for the Rectifying Board from Power Structure 2 .

Installation

Install the Rectifying Boards in reverse order of removal, while referring to Torque Specifications on page 3-1.

Removing the Left-Side Output Power Modules

Removal

Important: Do not attempt to disassemble the Output Power Modules.
Important: Always replace the Output Power Modules in pairs (do not replace just one module).

1. Remove power from the drive (Removing Power from the Drive on page 3-3).
2. Remove the covers from the power structures. Refer to Removing the Covers from the Power Structures on page 3-15.
3. Remove the power structures from the drive cabinet (Removing the Power Structures from the Drive Enclosure on page 3-25).
4. On Power Structure 1, remove the cable-tie which secures the Power Module Circuit Board to the Adapter Board.
5. Disconnect the output leads from the bottom of the Output Power Module.
6. Loosen, but do not remove, the screws that secure the Y Bus Bars to the drive.

7. Remove the balancing resistor wires from bus bars.

8. Remove the screws that secure the Snubber Capacitors, and remove the Snubber Capacitors.
9. Remove the screws that secure the DC Bus Bars to the left side of the power structure, and remove the DC Bus Bars.

10. Remove the screws which secure the Output Power Module to the drive.
11. Disconnect the Power Module Circuit Board from the Adapter Board.
12. Remove the Output Power Module from the drive.

13. Repeat steps 4-12 to remove the left-side Output Power Module from Power Structure 2.

Installation

Install the Output Power Modules in reverse order of removal, while referring to Torque Specifications on page 3-1.

Removing the Right-Side
 Output Power Modules and Rectifying Modules

Removal
Important: Do not attempt to disassemble the Output Power Modules.
Important: Always replace the Output Power Modules in pairs (do not replace just one module).

1. Remove power from the drive (Removing Power from the Drive on page 3-3).
2. Remove the covers from the power structures. Refer to Removing the Covers from the Power Structures on page 3-15.
3. Remove the power structures from the drive cabinet (Removing the Power Structures from the Drive Enclosure on page 3-25).
4. On Power Structure 1, carefully disconnect the fiber-optic cables from the Gate Driver Board, and carefully set them aside.

ATTENTION: Hazard of permanent eye damage exists when using optical transmission equipment. This product emits intense light and invisible radiation. Do not look into fiber-optic ports or fiber-optic cable connectors.

Minimum inside bend radius for fiber-optic cable is 25.4 mm (1 in .). Any bends with a shorter inside radius can permanently
5. Remove the cables from $\mathrm{X} 13, \mathrm{X} 14$ and X 15 sockets on the Gate Driver Board, and carefully set them aside. Also, disconnect DC Bus wiring from the Gate Driver Board.
6. Remove the cable-tie which secures the Power Module Circuit Board to the Adapter Board.
7. Disconnect the output leads from the bottom of the Output Power Module.
8. Loosen, but do not remove, the screws that secure the Y Bus Bars to the drive.

9. Remove the balancing resistor wires from bus bars.

10. Disconnect all wiring from the circuit board on the Rectifying Module.
11. Disconnect the cables from the AC input terminals on the Rectifying Module.
12. Remove the circuit board from the Rectifying Module (refer to Removing the Rectifying Boards on page 3-29).
13. Remove the screws that secure the Snubber Capacitors, and remove the Snubber Capacitors.

14. Remove the screws that secure DC Bus Bars to right side of power structure, and remove the DC Bus Bars.

15. Remove the screws that secure the Rectifying Module to the power structure, and remove the Rectifying Module.

16. Remove the screws that secure the Output Power Module to the power structure, and remove the Output Power Module.

17. Repeat steps 4-16 to remove the right-side Output Power Module and Rectifying Module from Power Structure 2.

Installation

Install the Output Power Modules and Rectifying Modules in reverse order of removal, while referring to Torque Specifications on page 3-1.

Removing the Fan Inverters Removal

1. Remove power from the drive (Removing Power from the Drive on page 3-3).
2. Remove the covers from the power structures. Refer to Removing the Covers from the Power Structures on page 3-15.
3. Remove the power structures from the drive cabinet (Removing the Power Structures from the Drive Enclosure on page 3-25).
4. Prepare Power Structure 1 for Inverter Assembly Removal.

5. Remove the Inverter Assemblies.

Important: Do not damage the output transformer when removing or installing the inverter.
6. Remove the Inverter from the old Inverter Assembly.

Task	Description
\mathbf{A}	Disconnect the cables at connectors X4 (Blue) and X5 (Black).

7. Repeat steps 4-6 to remove the Fan Inverters from Power Structure 2.

Installation
Install the fan inverters in reverse order of removal, while referring to Torque Specifications on page 3-1.

Removing the DC Bus
 Capacitors

Removal

1. Remove power from the drive (Removing Power from the Drive on page 3-3).
2. Remove the covers from the power structures. Refer to Removing the Covers from the Power Structures on page 3-15.
3. Remove the power structures from the drive cabinet (Removing the Power Structures from the Drive Enclosure on page 3-25).
4. For Power Structure 1, remove the balancing resistor wires from bus bars.

5. Remove the screws that secure DC Bus Bars to right side of power structure, and remove the DC Bus Bars.

6. Remove the four (4) screws that secure the capacitor to the power structure, and remove the capacitor.

7. Repeat steps 4-6 to remove the DC Bus Capacitors from Power Structure 2.

Installation

Install the capacitors in reverse order of removal, while referring to Torque Specifications on page 3-1.

Start-Up After Repair

1
ATTENTION: Power must be applied to the drive to perform the following start-up procedure. Some of the voltages present are at incoming line potential. To avoid electric shock hazard or damage to equipment, only qualified service personnel should perform the following procedure. Thoroughly read and understand the procedure before beginning. If an event does not occur while performing this procedure, Do Not Proceed. Remove Power including user supplied control voltages. User supplied voltages may exist even when main AC power is not applied to then drive. Correct the malfunction before continuing.

Phone	United States/ Canada	1.262 .512 .8176 (7 AM - 6 PM CST)
	Outside United	You can access the phone number for your country via
	States/Canada	the Internet: Go to http://www.ab.com Click on Support (http:// support.rockwellautomation.com/) Under Contact Customer Support, click on Phone Support
Internet	\Rightarrow	Go to http://www.ab.com/support/abdrives/
E-mail	\Rightarrow	support@drives.ra.rockwell.com

Be prepared to provide the following information when you contact support:

- Product Catalog Number
- Product Serial Number
- Firmware Revision Level

Before Applying Power to the Drive

1. Check for zero volts between DC+ and DC-.
2. Perform forward and reverse biased diode tests, using a digital multimeter. Refer to Conducting Forward and Reverse Biased Diode Tests for Major Power Components on page 2-4.

Testing with the External DC Power Supply Without Load (Optional)

This is a low current - low risk test for the Output Power Module and drive Control board. It requires the recommended High Voltage DC Test Power Supply.

1. Verify that the DC Test Power Supply is de-energized.
2. Connect the power supply's DC+ to the drive's DC+ terminal and the power supply's DC- to the drive's DC- terminal.
3. Set the power supply voltage setting to zero.
4. Switch on the external DC Test Power Supply.
5. Slowly increase the DC Test Power Supply output voltage to the drive's nominal DC bus voltage (650 V dc for drives with $380-500 \mathrm{~V}$ ac input or 775 V dc for drives with $600-690 \mathrm{~V}$ ac input).
6. Measure the DC bus voltage and verify that the value is reflected in:

- parameter 306 [DC Bus Voltage] (700S)
- parameter 012 [DC Bus Voltage] (700H)

7. Make configuration changes which allow the HIM to issue start and speed commands.
8. Make configuration changes which allow operation without an encoder and motor.
9. Start the drive, by pressing (the start button).
10. Increase the speed command from zero to base speed, by pressing Δ (the up button).
11. Stop the drive, by pressing (the stop button).
12. Re-configure the drive to suit the application.
13. Decrease the DC Test Power Supply output voltage to zero. Wait until DC bus voltage has decreased to zero. Switch off the external DC power supply.

Testing Without a Motor

Performing the Power

 Circuit Diagnostic Test on a 700SThis test allows you to measure several operating parameters and diagnose problems without connecting the motor.

1. Verify that input power wiring and grounding is connected.
2. Verify that the motor cables are disconnected.
3. Energize the drive.
4. Make configuration changes which allow the HIM to issue start and speed commands.
5. Make configuration changes which allow operation without an encoder and motor.
6. Start the drive, by pressing (the start button).
7. Increase the speed command from zero to base speed, by pressing (the up button).
8. Measure the output voltage on each phase and verify that it is balanced. If it is unbalanced troubleshoot the drive.
9. Stop the drive, by pressing (the stop button).
10. Re-configure the drive to suit the application.

The Power Circuit Diagnostic Test, on the 700S, allow you to diagnose problems in the drive's power structure without applying large amounts of power.

1. Verify that input power wiring and grounding is connected.
2. Verify that the motor cables are connected.
3. Energize the drive.
4. From the Monitor menu on the HIM press Esc (the escape button) to navigate to the Main menu.
5. Use (the down button) to move the cursor to the Start-Up selection, and \leadsto to select Start-Up. Then press \leadsto again to verify your intention to continue with the Start-Up menu.
6. Use (the down button) to move the cursor to Power Circuit Diagnostics (Pwr Circuit Diag), and \leftrightarrows to select Power Circuit Diagnostics.
7. Press to begin the Power Circuit Diagnostic routine. Follow indications and instructions on the HIM.

Testing With the Motor

This test allows you to measure several operating parameters and diagnose problems without connecting the motor to its mechanical load.

1. Verify that input power wiring and grounding is connected.
2. Verify that the motor cables are connected.
3. Verify that the motor load is disconnected.
4. Energize the drive.
5. Start the drive and increase the speed from zero to base speed.
6. Measure drive output current and verify that the value is reflected in:

- parameter 308 [Output Current] (700S)
- parameter 003 [Output Current] (700 H)

7. Stop the drive.

Service Tools and Equipment

Software Tools
DriveTools ${ }^{\mathrm{TM}}$ SP, DriveExecutive, DriveExplorer ${ }^{\mathrm{TM}}$ and DriveObserver ${ }^{\mathrm{TM}}$ are software tools for uploading, downloading and monitoring system parameters.

Service tools

This list of basic service tools which will cover needs of tools for repair and maintenance measurements.

Item	Description	Details
1	Oscilloscope	Portable, digitizing, dual channel scope, with isolation
2	Current clamp	1000A(ac, rms), signal output
3	Soldering station	Soldering / de soldering
4	Adjustable power supply	0 ...1300Vdc, 1A, adjustable current limit. Efore LPS $750-\mathrm{HV}$ or equivalent.
5	Adjustable power supply	0...690Vac (+10\%), 10A, three phase, galvanic isolation
6	Multi meter	Digital multi meter, capable of ac and dc voltage, continuity, resistance, capacitance measurements, and forward diode bias tests. Fluke model 87 III or equivalent.
7	Insulation tester	1000Vdc
8	Torque wrench	1...12Nm
9	Torque wrench	$6 . .50 \mathrm{Nm}$
10	box wrench	$7 \mathrm{~mm}, 8 \mathrm{~mm}, 10 \mathrm{~mm}, 13 \mathrm{~mm}, 17 \mathrm{~mm}, 19 \mathrm{~mm}, 22 \mathrm{~mm}$
11	socket extension	230 mm
12	Wrench	$7 \mathrm{~mm}, 8 \mathrm{~mm}, 10 \mathrm{~mm}, 13 \mathrm{~mm}, 17 \mathrm{~mm}, 19 \mathrm{~mm}, 22 \mathrm{~mm}$
13	Wire cutter	
14	Nose pliers	
15	Crimping tools	For cable terminals 1,5... 240
16	Angle wrench	
17	Screw driver	
18	*Flat nose	7*2(mm)
19	*POZIDRIV	1,2,3
20	*Phillips	1, 2, 3
21	*Torx	25
22	Hexagonal wrench	4, 5, 6
23	ESD-protected place of work	Working surface, Floor covering, seat and ground connections
24	ESD-protective clothing	Wrist wrap, shoes, overall clothing (coat)
25	Power supply (service)	Capacity of three phase service 400/500/690Vac, 30A
26	20-MAINSTND maintenance stand	Maintenance stand for removing power structure from drive cabinet
27	Fiber-optic repair kit	Agilent HFBR-4593 Polishing Kit, consisting of a Polishing Fixture, 600 grit abrasive paper and 3 mm pink lapping film (3M Company, OC3-14). For Agilent HFBR-4532 latching connectors and HFBR-RL cable. Refer to Agilent publications 5988-9777EN and 5988-3625EN.

Schematics

List of Schematic Diagrams

For a Schematic Diagram on...	See...
Circuit Board Connections for 700S Drives with Phase II Control	page B-2
Circuit Board Connections for 700H Drives	page B-3
ASIC Circuit Board Connections	page B-4
Power Circuitry for Drives with AC Input (Power Structure \#1)	page B-5
Power Circuitry for Drives with AC Input (Power Structure \#2)	page B-6
Power Circuitry for Drives with DC Input (Power Structure \#1)	page B-7
Power Circuitry for Drives with DC Input (Power Structure \#2)	page B-8
Fan Power Supply Connections	page B-9
AC Input Motor Connections	page B-10
DC Input Motor Connections	page B-11

Figure B. 1 Circuit Board Connections for 700 S Drives with Phase II Control

 Board \#2

Figure B. 3 ASIC Circuit Board Connections

Figure B. 5 Power Circuitry for Drives with AC Input (Power Structure \#2)

Figure B. 7 Power Circuitry for Drives with DC Input (Power Structure \#2)

Figure B. 8 Fan Inverter Connections

Figure B. 9 AC Input Motor Connections

Notes:

Connector Descriptions

For a Schematic Diagram on...	See...
ASIC Board on Power Structure \#1 to Gate Driver Board on Power Structure \#1 - Phase U Connections	page C-3
ASIC Board on Power Structure \#1 to Gate Driver Board on Power Structure \#1 - Phase V Connections	page C-3
ASIC Board on Power Structure \#1 to Gate Driver Board on Power Structure \#1 - Phase W Connections	page C-4
ASIC Board on Power Structure \#2 to Gate Driver Board on Power Structure \#2 - Phase U Connections	page C-4
ASIC Board on Power Structure \#2 to Gate Driver Board on Power Structure \#2 - Phase V Connections	page C-5
ASIC Board on Power Structure \#2 to Gate Driver Board on Power Structure \#2 - Phase W Connections	page C-5
ASIC Board on Power Structure \#1 to Rectifier/Precharge Circuit Board on Power Structure \#1 Connections	page C-6
ASIC Board on Power Structure \#2 to Rectifier/Precharge Circuit Board on Power Structure \#2 Connections	page C-6
PowerFlex 700H and 700S Interface Board to ASIC Board on Power Structure \#1 Fiber Optic Connections	page C-8
PowerFlex 700H and 700S Interface Board to ASIC Board on Power Structure \#2 Fiber Optic Connections	page C-9
ASIC Feedback Board on Power Structure \#1 to ASIC Board on Power Structure \#1 Connections	page C-9
ASIC Feedback Board on Power Structure \#2 to ASIC Board on Power Structure \#2 Connections	page C-9
ASIC Feedback Board to PowerFlex 700S High Power Star Interface Board Connections	page C-10
ASIC Feedback Board to PowerFlex 700H Star Coupler Board Connections	page C-10
ASIC Board to Left Side Main Cooling Fan Inverter Connections	page C-10
Left Side Main Cooling Fan Inverter to Right Side Main Cooling Fan Inverter Connections	page C-10
Right Side Main Cooling Fan Inverter Connections	page C-11
X50 Terminal Block Precharge Circuit Connections	page C-11

Circuit Board Connections The following tables detail the connection points for the frame 12 PowerFlex 700S and 700H AC input drives circuit boards and components.

Figure C. 1 ASIC Board Connectors

Figure C. 2 Gate Driver Board Connectors

Table C.A ASIC Board on Power Structure \#1 to Gate Driver Board on Power Structure \#1 - Phase U Connections

ASIC Board Connector	Pin Number	to	Pin Number	Gate Driver Board Connector	Description
X3	1	\ldots	1	X13	U_Feedback
	2	\ldots	2		U_Power_OK
	3	\ldots	3		U_DTR ${ }^{(1)}$ See Note Below
	4	\ldots	4		U_ETR ${ }^{(2)}$
	5	\ldots	5		U_ITR ${ }^{(3)}$
	6	...	6		U_DC-
	7	\ldots	7		UI
	8	\ldots	8		U_DC-_I
	9	\ldots	9		U_TEMP
	10	\ldots	10		U_DC-T
H8 (fiber optic)	H8	\ldots	H4	H4 (fiber optic)	UH or Gate Top
H9 (fiber optic)	H9	\ldots	H5	H5 (fiber optic)	UL or Gate Bottom

Note: See page C-4 for footnotes.
Table C.B ASIC Board on Power Structure \#1 to Gate Driver Board on Power Structure \#1 - Phase V Connections

ASIC Board Connector	Pin Number	to	Pin Number	Gate Driver Board Connector	Description
X4	1	\ldots	1	X14	V_Feedback
	2	\ldots	2		V_Power_OK
	3	\ldots	3		V_DTR ${ }^{(1)}$
	4	...	4		V_ETR ${ }^{(2)}$
	5	...	5		V_ITR ${ }^{(3)}$
	6	\ldots	6		V_DC-
	7	...	7		VI
	8	\ldots	8		V_DC-_I
	9	\ldots	9		V_TEMP
	10	...	10		V_DC-T
H10 (fiber optic)	H10	\ldots	H6	H6 (fiber optic)	VH or Gate Top
H11 (fiber optic)	H11	\ldots	H7	H7 (fiber optic)	VL or Gate Bottom

Note: See page C-4 for footnotes.

Table C.C ASIC Board on Power Structure \#1 to Gate Driver Board on Power Structure \#1 - Phase W Connections

ASIC Board Connector	Pin Number	to	Pin Number	Gate Driver Board Connector	Description
X5	1	...	1	X15	W_Feedback
	2	\ldots	2		W_Power_OK
	3	...	3		W_DTR ${ }^{(1)}$
	4	\ldots	4		W_ETR ${ }^{(2)}$
	5	\ldots	5		W_ITR ${ }^{(3)}$
	6	\ldots	6		W_DC-
	7	\ldots	7		WI
	8	\ldots	8		W_DC-_I
	9	\ldots	9		W_TEMP
	10	\ldots	10		W_DC-T
H12 (fiber optic)	H12	\ldots	H8	H8 (fiber optic)	WH or Gate Top
H13 (fiber optic)	H13	\ldots	H9	H9 (fiber optic)	WL or Gate Bottom

(1) DTR $=N$ Desat
(2) $\mathrm{ETR}=$ Phase I2T
(3) ITR = Phase Overcurrent

Table C.D ASIC Board on Power Structure \#2 to Gate Driver Board on Power Structure \#2 - Phase U Connections

ASIC Board Connector	Pin Number	to	Pin Number	Gate Driver Board Connector	Description
X3	1	.	1	X13	U_Feedback
	2	\ldots	2		U_Power_OK
	3	\ldots	3		U_DTR ${ }^{(1)}$ See Note Below
	4	\ldots	4		U_ETR ${ }^{(2)}$
	5	\ldots	5		U_ITR ${ }^{(3)}$
	6	\ldots	6		U_DC-
	7	\ldots	7		UI
	8	\ldots	8		U_DC-_I
	9	\ldots	9		U_TEMP
	10	\ldots	10		U_DC-T
H8 (fiber optic)	H8	\ldots	H4	H4 (fiber optic)	UH or Gate Top
H9 (fiber optic)	H9	\ldots	H5	H5 (fiber optic)	UL or Gate Bottom

Note: See page C-5 for footnotes.

Table C.E ASIC Board on Power Structure \#2 to Gate Driver Board on Power Structure \#2 - Phase V Connections

ASIC Board Connector	Pin Number	to	Pin Number	Gate Driver Board Connector	Description
X4	1	. .	1	X14	V_Feedback
	2	\ldots	2		V_Power_OK
	3	\ldots	3		V_DTR ${ }^{(1)}$
	4	\ldots	4		V_ETR ${ }^{(2)}$
	5	\ldots	5		V_ITR ${ }^{(3)}$
	6	\ldots	6		V_DC-
	7	\ldots	7		VI
	8	\ldots	8		V_DC-_I
	9	\ldots	9		V_TEMP
	10	\ldots	10		V_DC-T
H10 (fiber optic)	H10	\ldots	H6	H6 (fiber optic)	VH or Gate Top
H11 (fiber optic)	H11	\ldots	H7	H7 (fiber optic)	VL or Gate Bottom

Note: Refer to footnotes below Table C.F.
Table C.F ASIC Board on Power Structure \#2 to Gate Driver Board on Power Structure \#2 - Phase W Connections

ASIC Board Connector	Pin Number	to	Pin Number	Gate Driver Board Connector	Description
X5	1	...	1	X15	W_Feedback
	2	...	2		W_Power_OK
	3	.	3		W_DTR ${ }^{(1)}$
	4	.	4		W_ETR ${ }^{(2)}$
	5	...	5		W_ITR ${ }^{(3)}$
	6	\ldots	6		W_DC-
	7	\ldots	7		WI
	8	...	8		W_DC-_I
	9	...	9		W_TEMP
	10	\ldots	10		W_DC-T
H12 (fiber optic)	H12	\ldots	H8	H8 (fiber optic)	WH or Gate Top
H13 (fiber optic)	H13	...	H9	H9 (fiber optic)	WL or Gate Bottom

(1) $\operatorname{DTR}=N$ Desat
(2) $\mathrm{ETR}=$ Phase I2T
(3) ITR = Phase Overcurrent

Figure C. 3 Rectifier/Precharge Circuit Board Connectors

Table C.G ASIC Board on Power Structure \#1 to Rectifier/Precharge Circuit Board on Power Structure \#1 Connections

ASIC Board Connector	Pin Number	to	Pin Number	Rectifier Board Connector	Description
X2	1	\ldots	1	X13	
	2	\ldots.	2		SWTS_DRV
	3	\ldots	3		SWTS_FB
	4	\ldots	4		W_DTR
	5	\ldots.	5		Mains Fault

Table C.H ASIC Board on Power Structure \#2 to Rectifier/Precharge Circuit Board on Power Structure \#2 Connections

ASIC Board Connector	Pin Number	to	Pin Number	Rectifier Board Connector	
X2	1	\ldots	1	Xescription	

Figure C. 4 PowerFlex 700 S High Power Star Interface Circuit Board Connectors

Figure C. 5 PowerFlex 700H Star Coupler Circuit Board Connectors

Table C.I PowerFlex 700H and 700S Interface Board to ASIC Board on Power Structure \#1 Fiber Optic Connections

Interface Board Fiber Optic Connector				ASIC Board Fiber Connector (1)	Description: Reference to ASIC Board	
700 H	700S	Type	to	Type		
H1	J8	TX	\ldots	RX	H1	Gate_Enable
H2	J9	TX	\ldots	RX	H2	U_Gate
H3	J10	TX	\ldots	RX	H3	V_Gate
H4	J11	TX	\ldots	RX	H4	W_Gate
H5	J12	TX	\ldots	RX	H5	A/D Convert
H6	J14	TX	\ldots	RX	H6	VBUS_RX
H7	J13	RX	\ldots	TX	H7	VBUS_TX

[^0]Table C.J PowerFlex 700H and 700S Interface Board to ASIC Board on Power Structure \#2 Fiber Optic Connections

Interface Board Fiber Optic Connector				ASIC Board Fiber Connector	Description: Reference to ASIC Board	
700H	700S	Type	to	Type		
H11	J19	TX	\ldots	RX	H1	Gate_Enable
H12	J20	TX	\ldots	RX	H2	U_Gate
H13	J21	TX	\ldots	RX	H3	V_Gate
H14	J22	TX	\ldots	RX	H4	W_Gate
H15	J23	TX	\ldots	RX	H5	A/D Convert
H16	J25	TX	\ldots	RX	H6	VBUS_RX
H17	J24	RX	\ldots	TX	H7	VBUS_TX

(1) Refer to Figure C. 1 on page C-2 for ASIC board fiber-optic connectors.

Figure C. 6 Termination Points on ASIC Feedback Boards

Table C.K ASIC Feedback Board on Power Structure \#1 to ASIC Board on Power Structure \#1 Connections

ASIC Feedback Board Connector	Pin	to	Pin	ASIC Board Connector	Description: Reference to ASIC Board
X900	1	\ldots	1	X26	PHU
	2	...	2		PHV
	3	...	3		PHW
	4	...	4		Trip_Out
	5	...	5		+5V
	6	\ldots	6		+5V

Table C.L ASIC Feedback Board on Power Structure \#2 to ASIC Board on Power Structure \#2 Connections

ASIC Feedback Board Connector	Pin	to	Pin	ASIC Board Connector	Description: Reference to ASIC Board
X900	1	...	1	X26	PHU
	2	...	2		PHV
	3	...	3		PHW
	4	...	4		Trip_Out
	5	\ldots	5		+5V
	6	...	6		+5V

Table C.M ASIC Feedback Board to PowerFlex 700S High Power Star Interface Board Connections

ASIC Feedback Board Connector	to	High Power Star Interface Board Connector	Description: Reference to Star Interface Board
H903 on Power Structure \#1	\ldots	J28	Trip_P1
H903 on Power Structure \#2	\ldots	J27	Trip_P2

Table C.N ASIC Feedback Board to PowerFlex 700H Star Coupler Board Connections

ASIC Feedback Board Connector	to	Star Coupler Board Connector	Description: Reference to Star Coupler Board
H900 on Power Structure \#1	\ldots	H21	PHU
H901 on Power Structure \#1	\ldots	H22	PHV
H902 on Power Structure \#1	\ldots	H23	PHW
H903 on Power Structure \#1	\ldots	H8	Trip_P1
H903 on Power Structure \#2	\ldots	H18	Trip_P2

Hardware Connections

Figure C. 7 Fan Inverter Circuit Board Connectors

Note: There is a left and right main cooling fan inverter on both Power Structures. The connections for each pair of fan inverters are the same.

Table C.O ASIC Board to Left Side Main Cooling Fan Inverter Connections

Description	ASIC Board Connector${ }^{(1)}$	Pin Number	Pin Number	Fan Inverter Connector	Description
+15 V dc power to X11 2 2 X8	+15 V dc power from ASIC board				
Fan Inverter board					

(1) Refer to Figure C .1 on page $\mathrm{C}-2$ for ASIC board fiber-optic connectors.

Table C.P Left Side Main Cooling Fan Inverter to Right Side Main Cooling Fan Inverter Connections

Description	Left Side Fan Inverter Connector	Pin Number	Pin Number	Right Side Fan Inverter Connector	Description
+15V dc power	X11	2	2	X8	+15V dc power
Fan Control		3	3		Fan Control
Fan Alarm		4	7		Fan Alarm

Table C.Q Right Side Main Cooling Fan Inverter Connections

Description	Fan Inverter Connector	Pin Number	Pin Number	Fan Inverter Connector	Description
+15V dc power	X3	2	4	X3	+15V dc power
Fan Alarm		4	2		Fan Alarm

Figure C. 8 X50 Terminal Block Connectors

Table C.R X50 Terminal Block Precharge Circuit Connections

ASIC Board Connector	Terminal	to	X50 Terminal Block	Description
X9 on ASIC	25	\ldots	1	Precharge Complete Signal
Board \#1	26	\ldots	2	Precharge Complete Signal
X15 on ASIC	21	\ldots	3	Charge Relay Contact
Board \#1	23	\ldots	4	Charge Relay Contact
X9 on ASIC	25	\ldots	1	Precharge Complete Signal
Board \#2	26	\ldots	2	Precharge Complete Signal
X15 on ASIC	21	\ldots	3	Charge Relay Contact
Board \#2	23	\ldots	4	Charge Relay Contact

Notes:

Disassembly / Assembly Diagrams

For a Diagram on...	See...
Main Power Structure Assembly	page D-2
Right Side of Power Structure	page D-4
Left Side of Power Structure	page D-6
Fan Inverter Assembly	page D-7
ASIC Assembly	page D-8
ASIC Assembly	page D-8
Main Fan Assembly	page D-9

Disassembly/Assembly Diagrams and Spare Parts Numbers

Diagrams on the following pages illustrate disassembly and assembly of the drive and its sub-systems and are followed by a list of spare part numbers where applicable.

When ordering spare parts, you must provide the serial number of the drive. The serial number is located on the data nameplate on the Control Frame just above the bar code.

A complete list of spare parts for PowerFlex $700 \mathrm{H} / \mathrm{S}$ drives is available on the Allen-Bradley web site at:
http://www.ab.com/support/abdrives/powerflex70/PF7ReleasedParts.pdf

Figure D. 1 Main Power Structure Assembly
\triangle
ATTENTION: The sheet metal cover and mounting screws on the ASIC Board located on the power structure are energized at (-) DC bus potential high voltage. Risk of electrical shock, injury, or death exists if someone comes into contact with the assembly.

Table D.A Main Power Structure Assembly Part Numbers

Part Name	Part No.
Adapter Board	$20-$ VB00330
Air Flow Guide Right	NA
ASIC Assembly Upgrade Kit (without ASIC Board)	$20-$ FR10850
Bus Bar	NA
Fan Inverter Assembly, Left	$20-$ FR10844
Fan Inverter Assembly, Right	$20-F R 10845$
Fan Inverter Capacitor 7 $\mu \mathrm{f} 450 \mathrm{~V}$ ac	$20-$-PP00060
Gate Driver Board	$400 / 480 \mathrm{~V}$
	SK-H1-GDB1-F10D
Input Terminal Assembly	SK-H1-GDB1-F10E
Input Terminal Cable Insulator	NA
Insulator For Bus Bar	NA
Left Side Board Bracket	NA
Main Terminal Cover	NA
Plastic Cover Base, Top Left	NA
Plastic Cover Base, Top Right	NA
Right Side Board Bracket	NA
Touch Cover Front	NA
Touch Cover Side Plate	NA

Figure D. 2 Right Side of Power Structure

Table D.B Right Side of Power Structure Part Numbers

Part Name	Part No.
Air Flow Guide Right	NA
DC Bus Bar	$20-F R 10044$
	$20-F R 10052$
DC Bus Bar Insulator	$20-F R 10190$

Part Name		Part No.
Output Power Module	$400 / 480 \mathrm{~V}$	NA
	$600 / 690 \mathrm{~V}$	NA
Rectifying Board	$400 / 480 \mathrm{~V}$	$20-\mathrm{VB} 00459$
	$600 / 690 \mathrm{~V}$	$20-\mathrm{VB} 00460$
Rectifying Module	$400 / 480 \mathrm{~V}$	$20-\mathrm{FR} 10820$
	$600 / 690 \mathrm{~V}$	$20-\mathrm{FR} 10821$
Snubber Capacitor Assembly		$20-\mathrm{PP} 10019$

Figure D. 3 Left Side of Power Structure

\triangle
ATTENTION: The sheet metal cover and mounting screws on the ASIC Board located on the power structure are energized at (-) DC bus potential high voltage. Risk of electrical shock, injury, or death exists if someone comes into contact with the assembly.

Table D.C Left Side of Power Structure Part Numbers

Part Name		Part No.
ASIC Assembly (without	Board)	NA
Cover Plate		NA
DC Bus Bar		20-FR10048 20-FR10052 20-FR10191
DC Bus Bar Insulator		$\begin{aligned} & \text { 20-FR10026 } \\ & \text { 20-FR10028 } \\ & \text { 20-FR10143 } \end{aligned}$
Discharging Resistor	2x16k	20-PP00056
Electrolytic Capacitor	ELKO 3300 $\mu \mathrm{f} 420 \mathrm{~V}$ for 400/480V Drives	20-PP01005
	ELKO 5600 f 420 V for 600/690V Drives	20-PP01099
Frame		NA
Insulation Support		NA
Output Power Module	400/480V	NA
	600/690V	NA
Snubber Capacitor Ass		20-PP10019

Figure D. 4 Fan Inverter Assembly

Table D.D Fan Inverter Assembly Part Numbers

Part Name	Part No.
Fan Inverter Assembly, Left	$20-$ FR10844
Fan Inverter Assembly, Right	$20-$ FR10845
Fan Inverter Board	$20 \mathrm{VB00299}$
Fan Inverter Capacitor $7 \mu \mathrm{\mu} 450 \mathrm{~V}$ ac	$20-\mathrm{PP} 00060$

Figure D. 5 ASIC Assembly
今
ATTENTION: The sheet metal cover and mounting screws on the ASIC Board located on the power structure are energized at (-) DC bus potential high voltage. Risk of electrical shock, injury, or death exists if someone comes into contact with the assembly.

Table D.E ASIC Assembly Part Numbers

Part Name	Part No.
ASIC Assembly Bracket ASIC Assembly Bracket ASIC Assembly Bracket ASIC Assembly Bracket ASIC Assembly Cover SK-H1-ASICBD-D820 SK-H1-ASICBD-D920 ASIC Board for 400/480V Drives SK-H1-ASICBD-D1030	
ASIC Board for 600/690V Drives	SK-H1-ASICBD-E650 SK-H1-ASICBD-E750 SK-H1-ASICBD-E820

Figure D. 6 Main Fan Assembly

Table D.F Main Fan Assembly Part Numbers

Part Name	Part No.
Intake Cone	NA
Main Fan 230W	$20-$-PP01080
Main Fan Housing, Left and Right	NA

Notes:
www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA,Tel: (1) 414.382.2000, Fax: (1) 414.382 .4444
Europe/Middle East/Africa: Rockwell Automation, Vorstlaan/Boulevard du Souverain 36, 1170 Brussels, Belgium,Tel: (32) 2663 0600, Fax: (32) 26630640 Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong,Tel: (852) 2887 4788, Fax: (852) 25081846

[^0]: (1) Refer to Figure C. 1 on page C-2 for ASIC board fiber-optic connectors

