PowerFlex[®] 700S / 700H High Performance AC Drive - Frame 14

Hardware Service Manual 1000...1600 kW (400V), 1500...2300 HP (480V), 1500...2000 kW (690V), 1600...2400 HP (600V)

Important User Information

Solid state equipment has operational characteristics differing from those of electromechanical equipment. *Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls* (Publication SGI-1.1 available from your local Rockwell Automation sales office or online at_http:// www.rockwellautomation.com/literature) describes some important differences between solid state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc. is prohibited.

Throughout this manual, when necessary we use notes to make you aware of safety considerations.

WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.

Important: Identifies information that is critical for successful application and understanding of the product.

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequences.

Shock Hazard labels may be located on or inside the equipment (e.g., drive or motor) to alert people that dangerous voltage may be present.

Burn Hazard labels may be located on or inside the equipment (e.g., drive or motor) to alert people that surfaces may be at dangerous temperatures.

PowerFlex, DriveExplorer, DriveExecutive, DPI, and SCANport are either trademarks or registered trademarks of Rockwell Automation, Inc.

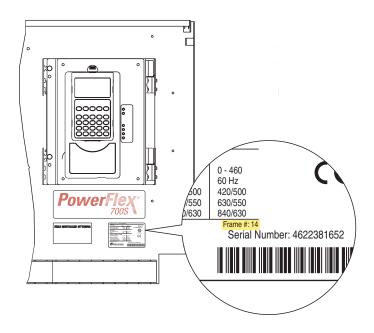
	Important User Information	1-2
Preface	Overview	
	Who Should Use this Manual?	P-1
	What is in this Manual	P-1
	Reference Materials	P-2
	Understanding Manual Conventions	P-2
	Terms.	
	Cross References (Examples)	
	Additional Support Available on Internet	
	Precautions	
	Qualified Personnel	
	Personal Safety	
	Class 1 LED Product	
	Product Safety	
Chapter 1	Troubleshooting and Error Codes	
	Viewing the 700S Diagnostic LEDs	1 1
	Viewing the 700H Diagnostic LED	
	Creating Fault Reports	
	Addressing 700S Faults Addressing 700H Faults Addressing 700H Faults Addressing 700H Faults	
	PowerFlex 700H Fault Subcodes	
	Common Drive Conditions and Corrective Actions	
	Molded Case Circuit Breakers (MCCBs) Trips	
	Technical Support Options	
	Technical Support Wizards What You Need When You Call Tech Support	
		1-20
Chapter 2	Component Test Procedures	
	Performing Visual Inspections	
	Inspecting the Cooling Tunnels and Heatsinks	
	Inspecting the Rectifying and Power Structures	2-2
	Conducting Forward and Reverse Biased Diode Tests for Major Power Components	
	Conducting Gate Driver Board Gate Interface Resistance Measurements	
	Checking the Rectifying Modules (on AC Input Drives Only)	
	Taking Resistance Measurements on the Precharge Resistors	
	Taking Resistance Measurements on the Rectifying Circuit Board	
	Taking Resistance Measurements on the Rectifying Module Z	
	Checking the Main Fan Inverters and Fans	2-10
	Checking the Fan Inverter LEDs	2-10
	Checking Fan Inverter Fuses	
	Fan Inverter DIP Switch Settings	2-11
	Isolating a Faulty Fan Inverter on the NFE Unit	2-12
	Isolating a Faulty Fan Inverter on the Inverter Unit	2-14
	Checking the Main Fan Motors	2-15

Chapter 3 Access Procedures

. 3-2
. 3-3
. 3-4
. 3-5
. 3-5
. 3-6
. 3-6
. 3-7
. 3-8
. 3-9
3-10
3-10
3-11
3-12
3-12
3-12
3-13
3-14
3-14
3-16
3-17
3-17
3-18
3-18
3-19
3-19
3-20
3-20
3-20
3-21
5-22
2 22
3-23
3-23
3-23 3-24
3-23 3-24 3-24
3-23 3-24 3-24 3-25
3-23 3-24 3-24 3-25 3-27
3-23 3-24 3-24 3-25 3-27 3-27
3-23 3-24 3-25 3-25 3-27 3-27 3-30
3-23 3-24 3-24 3-25 3-27 3-27 3-30 3-31
3-23 3-24 3-24 3-25 3-27 3-27 3-30 3-31 3-31
3-23 3-24 3-24 3-25 3-27 3-27 3-30 3-31 3-31 3-32
3-23 3-24 3-24 3-25 3-27 3-27 3-30 3-31 3-31 3-32 3-33
3-23 3-24 3-24 3-25 3-27 3-27 3-30 3-31 3-31 3-32 3-33 3-33
3-23 3-24 3-25 3-27 3-27 3-30 3-31 3-31 3-32 3-33 3-34 3-40
3-23 3-24 3-24 3-25 3-27 3-27 3-30 3-31 3-31 3-32 3-33 3-34 3-40 3-41
3-23 3-24 3-24 3-25 3-27 3-27 3-30 3-31 3-31 3-32 3-33 3-34 3-40 3-41 3-41
3-23 3-24 3-25 3-27 3-27 3-30 3-31 3-31 3-32 3-33 3-34 3-40 3-41 3-41 3-42
3-23 3-24 3-24 3-25 3-27 3-30 3-31 3-31 3-32 3-33 3-34 3-34 3-41 3-42 3-42 3-42
3-23 3-24 3-25 3-27 3-27 3-30 3-31 3-31 3-32 3-33 3-34 3-40 3-41 3-41 3-42

	Installing the Gate Driver Circuit Boards	. 3-44
	Removing the ASIC Circuit Boards	. 3-44
	Installing the ASIC Circuit Boards	. 3-47
	Removing the Protective Screens from the Power Structure Enclosure	. 3-48
	Installing the Protective Screens on the Power Structure Enclosure	. 3-48
	Removing the Voltage Feedback Circuit Board	
	Installing the Voltage Feedback Circuit Board	
	Removing the Main Cooling Fans from the Inverters	. 3-51
	Installing the Main Cooling Fans on the Inverters	
	Removing the Fan Inverters from the Inverters	. 3-52
	Installing the Fan Inverters	. 3-55
	Removing the Air Flow Plate from the Power Structure Enclosure	. 3-56
	Installing the Air Flow Plate on the Power Structure Enclosure	. 3-56
	Removing the Inverter Unit from the Enclosure	. 3-57
	Installing the Inverter Unit	
	Removing the Fan Inverter Fuse Assemblies from the Inverters	. 3-61
	Installing the Fan Inverter Fuse Assemblies on the Inverters	. 3-62
	Removing the DC Connective Bus Bars from the Inverters	. 3-63
	Installing the DC Connective Bus Bars on the Inverters	. 3-64
	Removing the Inverters from the Frame	. 3-65
	Installing the Inverters	. 3-67
	Removing the Output Power Modules from the Inverters	. 3-68
	Installing the Output Power Modules	. 3-74
	Removing the DC Bus Capacitors from the Inverters	. 3-74
	Installing the DC Bus Capacitors in the Inverters	. 3-75
Chapter 4	Start-Up After Repair	
	Loading the 700H EEPROM.	4-1
	Before Applying Power to the Drive.	
	Testing Without a Motor	
	Performing the Power Circuit Diagnostic Test on a 700S Drive.	
	Testing With the Motor Without a Mechanical Load	
Appendix A	Service Tools and Equipment	
	Software Tools	Δ 1
	Service Tools	
		A-1
Appendix B	Schematics	
TT	List of Schematic Diagrams	B-1
Annonality O	On an and a Departmention of	
Appendix C	Connector Descriptions	
	Circuit Board Connections	
	Hardware Connections	C-8
Appendix D	Disassembly / Assembly Diagrams	
	Disassembly/Assembly Diagrams and Spare Parts Numbers	D-1

Index


Overview

Who Should Use this Manual?

This manual is intended for qualified service personnel responsible for troubleshooting and repairing frame 14 PowerFlex 700S and 700H AC drives. You should have previous experience with, and an understanding of, electrical terminology, procedures, required troubleshooting equipment, equipment protection procedures and methods, and safety precautions. Refer to safety related practices contained in publication NFPA 70E, *Standard for Electrical Safety in the Work Place*.

What is in this Manual

This manual contains hardware service information for frame 14 PowerFlex 700S and 700H drives. Verify that you are working on a Frame 14 drive by checking the data nameplate on the control frame. The frame number is printed just above the serial number.

Reference Materials

Allen-Bradley publications are available on the internet at: <u>www.rockwellautomation.com/literature</u>.

The following publications provide general drive information.

Title	Publication
Wiring and Grounding Guide, (PWM) AC Drives	DRIVES-IN001
Safety Guidelines for the Application, Installation and Maintenance of Solid State Control	SGI-1.1
A Global Reference Guide for Reading Schematic Diagrams	100-2.10
Guarding Against Electrostatic Damage	8000-4.5.2

The following publications provide specific PowerFlex drive information.

Title	Publication
Installation Instructions - PowerFlex 700S and 700H Drives	PFLEX-IN006
Programming Manual - PowerFlex 700H Adjustable AC Drive	20C-PM001
User Manual - PowerFlex 700S High Performance Drive Phase II Control	20D-UM006
Installation Instructions - Hi-Resolution Feedback Option Card for PowerFlex 700S Drives	20D-IN001
Installation Instructions - Multi Device Interface Option for PowerFlex 700S Drives	20D-IN004
Installation Instructions - Main Control Board PowerFlex 700S Drives	20D-IN005
Installation Instructions - Control Assembly Cover for PowerFlex 700S Drives	20D-IN006
Installation Instructions - SynchLink Board for PowerFlex 700S Drives with Phase II Control	20D-IN010
Installation Instructions - PowerFlex 700S /700H High Power Maintenance Stand	20D-IN014
Reference Manual - PowerFlex 700S Adjustable Frequency Drive Phase II Control	PFLEX-RM003

The following publications provide information that is necessary when applying the DriveLogixTM Controller for PowerFlex 700S drives.

Title	Publication
User Manual - DriveLogix System	20D-UM002
Installation Instructions - DriveLogix Controller	20D-IN002
Installation Instructions - Memory Expansion for DriveLogix Controller	20D-IN007
ControlNet Daughtercard Installation Instructions	1788-IN002
ControlNet Daughtercard Installation Instructions	1788-IN005

Understanding Manual Conventions

Terms

The following words are used throughout the manual to describe an action:

Word	Meaning
Can Possible, able to do something	
Cannot	Not possible, not able to do something
May	Permitted, allowed
Must	Unavoidable, you must do this
Shall	Required and necessary
Should	Recommended
Should Not	Not recommended

Cross References (Examples)

"<u>Figure 2.2 on page 2-6</u>" is a cross reference to figure 2.2 on page 5 of Chapter 2.

"<u>Figure C.1 on page C-2</u>" is a cross reference to figure C.1 on page 2 of Appendix C.

Additional Support Available on Internet

Precautions

Additional troubleshooting information and software tools are available on the Allen-Bradley Drives Support Website (*http://www.ab.com/support/abdrives/*).

Qualified Personnel

ATTENTION: Only **qualified personnel** familiar with high power PowerFlex 700S and 700H Drives and associated machinery should plan or implement the installation, start-up and subsequent maintenance of the system. Failure to comply may result in personal injury and/or equipment damage.

Personal Safety

ATTENTION: The sheet metal cover and mounting screws on the ASIC Board located on the inverters of the power structure are energized at (-) DC bus potential high voltage. Risk of electrical shock, injury, or death exists if someone comes into contact with the assembly.

ATTENTION: To avoid an electric shock hazard, verify that the voltage on the bus capacitors has discharged completely before servicing. Check the DC bus voltage at the Power Terminal Block by measuring between the +DC and -DC terminals, between the +DC terminal and the chassis, and between the -DC terminal and the chassis. The voltage must be zero for all three measurements.

ATTENTION: Potentially fatal voltages may result from improper usage of an oscilloscope and other test equipment. The oscilloscope chassis may be at a potentially fatal voltage if not properly grounded. If an oscilloscope is used to measure high voltage waveforms, use only a dual channel oscilloscope in the differential mode with X 100 probes. It is recommended that the oscilloscope be used in the A minus B Quasi-differential mode with the oscilloscope chassis correctly grounded to an earth ground.

Class 1 LED Product

ATTENTION: Hazard of permanent eye damage exists when using optical transmission equipment. This product emits intense light and invisible radiation. Do not look into module ports or fiber-optic cable connectors.

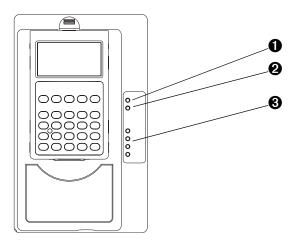
Product Safety

ATTENTION: This drive contains **ESD** (Electrostatic Discharge) sensitive parts and assemblies. Static control precautions are required when installing, testing, servicing or repairing this assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with static control procedures, reference A-B publication 8000-4.5.2, "Guarding Against Electrostatic Damage" or any other applicable ESD protection handbook.

ATTENTION: An incorrectly applied or installed drive can result in component damage or a reduction in product life. Wiring or application errors, such as, undersizing the motor, incorrect or inadequate AC supply, or excessive ambient temperatures may result in malfunction of the system.

For information on	See page
Viewing the 700S Diagnostic LEDs	<u>1-1</u>
Viewing the 700H Diagnostic LED	<u>1-3</u>
Creating Fault Reports	<u>1-4</u>
Addressing 700S Faults	<u>1-4</u>
Addressing 700H Faults	<u>1-11</u>
Common Drive Conditions and Corrective Actions	<u>1-23</u>
Molded Case Circuit Breakers (MCCBs) Trips	<u>1-25</u>
Technical Support Options	1-25

Troubleshooting and Error Codes


Viewing the 700S Diagnostic LEDs

The PowerFlex 700S contains a drive power and status LED, communication LEDs, and SynchLink LEDs (if the SynchLink option board is installed) that provide an indication of certain drive faults. See <u>Table 1.A on page 1-2</u> for a description of the power and status LED indicators. The status of these LEDs can also be viewed from the HIM or from an application program (e.g., DriveExplorerTM) in parameter 554 [LED Status] (only available with DriveLogix version 15.03 or later).

ATTENTION: The RUN LED and the controller LEDs are only operational when the drive is energized. Servicing energized equipment can be hazardous. Severe injury or death can result from electrical shock, burn or unintended actuation of controlled equipment. Follow Safety related practices of NFPA 70E, *ELECTRICAL SAFETY FOR EMPLOYEE WORKPLACES*. DO NOT work alone on energized equipment!

		[#	Name	Color	State	Description									
		PWR (Power) Green Steady II		Steady	Illuminates when power is applied to the drive.											
	eri		0	STS (Status)	Green	Flashing	Drive is ready but not running and no faults are present.									
						Steady	Drive is running and no faults are present.									
	r Structure	ו סוומכוו			Yellow	Flashing	When running, a Type 2 (non-configurable) alarm condition exists and the drive continues to run. When stopped, a start inhibit exists and the drive cannot be started.									
	Power					Steady	A Type 1 (user configurable) alarm condition exists and the drive continues to run.									
	ă	-			Red	Flashing	A fault has occurred.									
						Steady	A non-resettable fault has occurred.									
						Flashing Alternately	The drive is in flash recovery mode. The only operation permitted is a flash upgrade.									
DRIVE		S S		PORT	Refer to the User Manual for the		Status of the DPI port internal communications (if present).									
ä		cati		MOD	appropriate Communication Adapter		Status of the communications module (when installed).									
		nu		NET A			Status of the network (if connected).									
	Assembly	Communications		NET B			Status of the secondary network (if connected).									
			⁽¹⁾ SYN	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	SYNCHLINK	SYNCHLINK	Green	Steady	The module is configured as the time keeper or the module is configured as a follower and synchronization is complete.
	Control	0			Green	Flashing	The follower(s) are not synchronized with the time keeper.									
	ပိ	Control			Red	Flashing	The module is configured as a time master on SynchLink and has received time information from another time master on SynchLink.									
				ENABLE	Green	On	The drive's enable input is high.									
					Green	Off	The drive's enable input is low.									

(1) SynchLink LEDS are located on the SynchLink daughtercard on the main circuit board in the control cassette.

Refer to Addressing 700S Faults on page 1-4 for more information.

Viewing the 700H Diagnostic LED

The control assembly on 700H drives contains a diagnostic LED which is visible through the cover and provides an indication of certain drive faults.

The control assembly is located in the upper, left-hand drive enclosure on the control frame.

ATTENTION: The control assembly LED is only operational when the drive is energized, and only visible with the door of the drive enclosure is open. Servicing energized equipment can be hazardous. Severe injury or death can result from electrical shock, burn or unintended actuation of controlled equipment. Follow Safety related practices of NFPA 70E, *ELECTRICAL SAFETY FOR EMPLOYEE WORKPLACES*. DO NOT work alone on energized equipment!

Figure 1.2 PowerFlex 700H Diagnostic LED

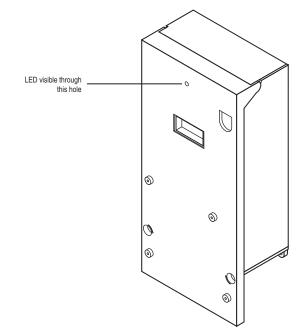


Table 1.B PowerFlex 700H Diagnostic LED Indications

LED	Indication
Steady	The drive is operational and has no faults
Flashing Quickly	 Switching power supply overload Rectifier board fault Fan or Fan inverter fault Brake Chopper fault Fiber Optic Adapter board fault
Flashing Slowly	Bad connection between circuit boards, check all connections

Refer to <u>Addressing 700H Faults on page 1-11</u> for more information on 700H drive faults.

Creating Fault Reports Complete fault reports are critical for analysis and repair of modules returned to the factory.

At a minimum, perform and record the following:

- Record the contents of the fault queue (faults and times of occurrence)
- Make record of any burn marks on the rectifying module, DC capacitors, inverter bridge, charging resistors, balancing/precharging resistors, printed circuit boards, bus bars, cabling and fiber-optic cabling
- Make record of any liquid and condensation marks on printed circuit boards, components and mechanical parts
- Make record of the amount of dust and other additional particles on drive and drive components
- Make record of any mechanical damage to the drive and drive components
- Record the size and type of main fuses
- Record any other important marks and damage

Addressing 700S Faults

No.	Name	Description	Action
1	Abs Ovespd Det	Motor speed has exceeded the limits set by Par 75 [Rev Speed Limit], Par 76[Fwd Speed Limit] and Par 335 [Abs OverSpd Lim]	 Check to see if the encoder feedback polarity is correct. Check to see if the drive is in torque mode, selected in Par 110 [Speed/TorqueMode] value 2 "Torque Ref". If the drive is in torque mode, verify that there is a load present. Verify min/max settings in Par 75 [Rev Speed Lim] and Par 76 [Fwd Speed Lim]. Check to see if the load is overhauling. If it is overhauling, turn the bus regulator off using Par 414 [Brake/Bus Cnfg] bit 2 "BusRef High".
2	Vref Decel Fail	The value of Par 301 [Motor Spd Ref] has failed to decrease during a ramp to zero speed stop. This could possibly be due to a speed trim from Par 21 [Speed Trim 1], Par 22 [Speed Trim 2] or Par 23 [Speed Trim 3].	-
3	Encoder 0 Loss	One of the following has occurred on encoder 0: • missing encoder (broken wire) • quadrature error • phase loss	Reconnect encoder or replace encoder. Configured with Par 365 [Fdbk LsCnfg Pri], Par 366 [Fdbk LsCnfg Alt], and Par 367 [Fdbk LsCnfgPosit]
4	Encoder 1 Loss	One of the following has occurred on encoder 1: • missing encoder (broken wire) • quadrature error • phase loss	Reconnect encoder or replace encoder. Configured with Par 365 [Fdbk LsCnfg Pri], Par 366 [Fdbk LsCnfg Alt], and Par 367 [Fdbk LsCnfgPosit]
5	Opt Port 0 Loss	 A fault on port 0 of the Hi-Resolution Encoder Feedback Option Card, MDI Option Card, Heidenhain, or Resolver Feedback Option Card has occurred. Par 260 [Stegmann0 Status] displays the fault status for port 0 of the Hi-Resolution Encoder Feedback Option Card. Par 264 [Heidenhain0 Stat] displays the fault status for port 0 of the Heidenhain Feedback Option Card. Par 269 [Resolver0 Status] displays the fault status for port 0 of the Resolver Feedback Option Card. 	 Reconnect encoder or replace encoder Reconnect option feedback card Configured with Par 365 [Fdbk LsCnfg Pri], Par 366 [Fdbk LsCnfg Alt], and Par 367 [Fdbk LsCnfgPosit]
6	Opt Port 1 Loss	 The Linear sensor portion of the MDI feedback option card has detected a fault condition. Par 286 [Linear1 Status] displays the fault status for linear portion of the MDI feedback Option Card. 	 Reconnect encoder or replace encoder Reconnect option feedback card Configured with Par 365 [Fdbk LsCnfg Pri], Par 366 [Fdbk LsCnfg Alt], and Par 367 [Fdbk LsCnfgPosit]
7	Params Defaulted	All parameters are reset to default by user.	-

No.	Name	Description	Action
8	SLink HW Fail	A fault on loading SynchLink firmware into FPGA on Main Control board at power up.	Replace Main Control board
)	SLink Comm Fail	A SynchLink communication fault has occurred.	Verify the SynchLink configuration in:
		Par 902 [SL Error Status] displays SynchLink errors.	 Par 904 [SL Node Cnfg] Par 905 [SL Rx CommFormat], and Par 910 [SL Tx CommFormat]
			Reconnect SynchLink communication fibers
			Configured with par 384 [SL CommLoss Cnfg]
10	Drive Power Loss	 DC Bus voltage has fallen below the minimum value Par 306 [DC Bus Voltage] displays bus voltage Par 330 [Fault TP Data] displays the minimum value when Par 329 [Fault TP Sel] is set to five The drive must first complete precharge before this check is made 	Verify AC line power
1	Motor OLoad Trip	A motor overload trip has occurred. Par 308 [Output	1. Reduce mechanical load
		Current] is squared, scaled and integrated over time. When this integrated value exceeds 1.0, this Exception Event occurs.	 Enter correct motor nameplate full load amps Par 2 [Motor NP FLA]
		The integrator's output can be viewed in Par 330 [Fault TP Data] when Par 329 [Fault TP Sel] is set to 13 "Mtr OL Outpt". The overload integration rate is affected by Par 336 [Motor OL Factor], Par 337 [Mtr I2T Curr Min], Par 338 [Mtr I2T Spd Min] and par 339 [Mtr I2T Calibrat].	Configured with Par 371 [Mtr OL Trip Cnfg]
2	Motor OLoad Pend	A motor overload is pending. Par 308 [Output Current] is	1. Reduce mechanical load
12		squared, scaled and integrated over time. When this integrated value exceeds 0.5, this exception event occurs.	 Enter correct motor nameplate full load amps Par 2 [Motor NP FLA]
		The integrator's output can be viewed in Par 330 [Fault TP Data] when par 329 [Fault TP Sel] is set to 13 "Mtr OL Outpt". The overload integration rate is affected by Par 336 [Motor OL Factor], Par 337 [Mtr I2T Curr Min], Par 338 [Mtr I2T Spd Min] and Par 339 [Mtr I2T Calibrat].	Configured with Par 371 [Mtr OL Trip Cnfg]
13	Motor Stalled	The motor has stalled. These three conditions have	1. Increase torque limit
-		occurred at the same time for the amount of time specified in Par 373 [Motor Stall Time]:	2. Reduce mechanical load
		 Drive is not stopped (Par 150 [Logic State Mach] not equal to zero) Drive is on limit (Par 304 [Limit Status] not equal to zero) Drive is at zero speed (Par 155 [Logic Status] / bit 13 "At 	Configured with Par 374 [Motor Stall Cnfg]
		Zero Spd" is set).	
4	Inv OTemp Pend	Par 313 [Heatsink Temp] is within 10° C of maximum.	1. Reduce the mechanical load
		View the maximum heat sink temperature in Par 348 [Drive	2. Lower the ambient temperature
		OL TP Data] when Par 347 [Drive OL TP Sel] is set to 30 - "fMaxHsDegc".	Configured with Par 375 [Inv OT Pend Cnfg]
5	Inv OTemp Trip	Par 313 [Heatsink Temp] is above the maximum limit or	1. Reduce the mechanical load
		temperature sensor has failed (shorted or open).	2. Lower the ambient temperature
		See Par 346 [Drive OL Status] / bit 0 "NTC Shorted" and bit 1 "NTC Open".	
16	Inv OLoad Pend	The drive's operating point is approaching the intermittent	Reduce the load on the drive
		current rating limitation. If output current remains at or above present levels, an inverter overload condition will occur.	Configured with Par 376 [Inv OL Pend Cnfg]
17	Inv OLoad Trip	The drive's operating point has exceeded the intermittent	Reduce the mechanical load
	·	current rating and a foldback to the continuous rating in Par 400 [Rated Amps] has occurred.	Configured with Par 377 [Inv OL Trip Cnfg]

No.	Name	Description	Action				
18	Ext Fault Input	A digital input has detected an external fault.	Configured with par 379 [Ext Flt/Alm Cnfg]				
		Enter a value of 3 "Ext Fault" or 38 "ExtFault Inv" in one of the following parameters to configure an input to detect an external fault: Par 825 [Digin 1 Sel] Par 826 [Digin 2 Sel] Par 827 [Digin 3 Sel] Par 828 [Dig In4 Sel] Par 829 [Dig In5 Sel] Par 830 [Dig In6 Sel]					
19	DSP Memory Error	Flash memory does not match the SRAM memory	 Cycle the drive power If the fault remains, replace the Main Control board 				
20	DSP Device Error	A DSP (Velocity Position Loop) interrupt task has not been completed in the allotted time.	 Cycle the drive power If the fault remains, replace the Main Control board 				
22	Over Frequency	Encoderless algorithm fails to converge on correct speed. Two possible causes: 1.) Velocity regulator is attempting to run below motor's slip speed. 2.) Frequency regulator "pulls out" and commanded motor frequency slows to maximum frequency limit.	-				
23	MC Commissn Fail	The drive has failed to complete either the Motor Autotuning procedure or the Power Circuits Diagnostics test. Par 463 [MC Diag Error 1], Par 464 [MC Diag Error 2], and Par 465 [MC Diag Error 3] display Motor Autotuning and Power Circuit Diagnostic faults. Par 465 [MC Diag Error 3] - Drive current, inductance, voltage and speed are not within motor nameplate specifications. This fault occur most frequently on low	 Verify that motor nameplate data is entered correctly into the drive. Verify the motor is wired for the correction voltage entering into the drive. Verify the encoder (if used) and velocity feedback is correct. Change tuning mode in to Par 515 [FVC Tune Config] to 0 the protote Tune" 				
24	DC Bus Overvolt	horsepower motors. Refer to "Protection" in Appendix A of the <i>PowerFlex 700S</i> <i>Phase II AC Drive User Manual</i> , publication 20D-UM006, for DC Bus Overvoltage Trip levels.	 9 "NoRotate Tune". Verify the AC Line. Verify that either the brake or bus regulator is enabled (Par 414 [Brake/Bus Cnfg], bit 0 "Brake Enable" or bit 3 "Bus Reg Enable", respectively). Verify that Par 128 [Regen Power Lim] is set properly. If Par 414 [Brake/Bus Cnfg] bit 0 "Brake Enable" is set, verify braking resistor is properly sized. 				
25	Inv Trans Desat	The IGBT detects a transistor failure (Desat).	-				
26	Ground Fault	A current to earth exceeds 35% of the peak drive rating.	Check the motor and external wiring to the drive output terminals for a grounded condition.				
27	Inst Overcurrent	Instantaneous motor current exceeds 214% of rating	 Reduce mechanical load. Check the motor and external wiring to the motor. 				
28	VPL/MC Comm Fail	 A communication failure has occurred between the Velocity Position Loop (VPL) processor and the Motor Control (MC) processor on the main control board. Possible causes are: VPL is flashing MC firmware into the MC processor when HIM indicates "Loading Config". MC has failed to complete or pass diagnostic tests. MC has not detected VPL handshake activity for over 32 ms. VPL has not detected MC handshake activity for over 32 ms. This is indicated when Fault Test Point 15 or 16 equals 1. This test point is viewed in Par 330 [Fault TP Data] when Par 329 [Fault TP Select] is set to value 15 or 16. 	 Cycle power Reflash firmware Replace Main Control board 				
29	PWM Signal Short	This fault is detected when ever the actual IGBT gate is different than the commanded IGBT states. This fault is detected by the Motor Control (MC) processor.	-				

No.	Name	Description	Action					
30	MC Firmware	One of the following Motor Control (MC) firmware errors has	1. Cycle power					
		occurred:	2. Reflash firmware					
		MC Task Over Run	3. Replace Main Control board					
		Illegal Interrupt Solf Diagnostia Fault						
		Self Diagnostic Fault Data Error						
31	Precharge Error	The precharge function has failed to complete within 30	1. Verify the value in Par 410 [PreChrg TimeOut]					
51	Flecharge Ellor	seconds (default) of the precharge request. The precharge						
		time out is configurable by Par 410 [PreChrg TimeOut].	2. Verify the bit value in Par 411 [PreChrg Control] = 1 "Enbl					
		A precharge request is initiated when the DC Bus voltage is	PrChrg"					
		above the Undervoltage Trip level and the precharge input	3. Configured with Par 381 [PreChrg Err Cnfg]					
		is high (the requirement for the precharge being high can be						
		bypassed by setting Par 411 [PreChrg Control] bit 01						
		"PreChrg Enable" off).						
32	PWM Asynch	The Motor Control Processor is not synchronized with	-					
		SynchLink.						
33	+/- 15volt Power	The 12V DC control voltage is outside the tolerance range.	Replace switch mode power supply. For smaller frames,					
		The positive voltage power must be within the band from +17.00 to +11.61V DC. The negative voltage power must be	replace drive.					
		within the band from -17.00 to -11.61V DC.						
35	Parameter Chksum	The checksum read from the EEPROM does not match the	1. Cycle power					
00		checksum calculated	2. Replace Main Control board					
38	Brake OL Trip	The calculated temperature of the dynamic braking resistor	Verify actual temperature of brake:					
00		is too high. The temperature is calculated by a thermal						
		model.	- If hot, wait for brake to cool					
		If the resistor is internal, the model uses resistor	- If cold, cycle power to the drive					
		characteristic stored in the power structure EEPROM	If cold, verify Par 416 [Brake PulseWatts] and Par 417					
		memory.	[Brake Watts] are correct.					
		If the resistor is external, the model uses values of Par 416 [Brake PulseWatts] and Par 417 [Brake Watts].	Configured with Par 369 [Brake OL Cnfg]					
39	PowerEE CRC Fail	The Cycling Ring Checksum (CRC) of the data stored in the	1. Cycle power					
00		Power board EEPROM does not match the stored CRC.						
			2. Check communication bus lines - 10 pin connector in Main Control board, Fiber Optic Star Interface board, and					
			fiber optic cable connections.					
40	SLink Mult Oflow	A SynchLink Multiplier Overflow has occurred. Par 927 [SL	Configured with Par 390 [SL MultErr Cnfg]					
	0	Mult State] displays SynchLink multiplier overflow errors.						
41	Ridethru Timeout	The drive has been in a bus loss ridethrough condition for	1. Verify the AC Line.					
		more than two seconds (default). The ridethrough timeout is	2. Verify the value in Par 407 [Power Loss Time].					
		configurable by Par 407 [Power Loss Time].						
42	DC Bus Undervolt	Bus voltage has fallen below the level configured by Par 409	1. Verify the AC Line.					
		[Line Undervolts].	2. Verify the precharge resistor is present. (With power off,					
			there should be a resistance between DC+ and BR+).					
40			Configured with Par 393 [BusUndervoltCnfg]					
43	VoltageFdbk Loss	Loss of Motor or DC Bus Voltage Feedback has occurred because of a communication failure between Motor Control	1. Check the communication line between Motor Control (MC) and Voltage Feedback board.					
		and Voltage Feedback board.						
		and volage i oodbaak board.	2. Replace the Voltage Feedback board.					
			Configured with Par 394 [VoltFdbkLossCnfg]					
44	Runtime Data Rst	Runtime data (hours, energy) has been reset to zero due to						
	Plantino Bata Plot	a checksum error.						
45	Enable Health	Safety circuit is active.	Check input signal to the Safety circuit.					
46	Interp Out Synch	Interpolator for position feedback lost synchronization with	Configured with Par 378 [Interp Flt Cnfg]					
-		Velocity Position Loop (VPL).						
47	MC CML Task Fail	Current Minor Loop (CML) task has been delayed or run	Cycle power.					
		with incorrect interval.						
48	No Ctrl Device	The controlling device (HIM or controller) has been	-					
		disconnected while the drive was running.						

No.	Name	Description	Action						
19	DPI Loss Port 1	The device at DPI port 1 has stopped communicating with	Verify DPI device is present and functional at port 1.						
		the drive.	Configured with Par 391 [DPI CommLoss Cfg]						
		A SCANport device is connected to a drive operating DPI devices at 500k Baud							
50	DPI Loss Port 2	The device at DPI port 2 has stopped communicating with	Verify DPI device is present and functional at port 2.						
		the drive.	Configured with Par 391 [DPI CommLoss Cfg]						
		A SCANport device is connected to a drive operating DPI devices at 500k Baud							
1	DPI Loss Port 3	The device at DPI port 3 has stopped communicating with	Verify DPI device is present and functional at port 3.						
		the drive.	Configured with Par 391 [DPI CommLoss Cfg]						
		A SCANport device is connected to a drive operating DPI devices at 500k Baud							
52	DPI Loss Port 4	The device at DPI port 4 has stopped communicating with	Verify DPI device is present and functional at port 4.						
		the drive.	Configured with Par 391 [DPI CommLoss Cfg]						
		A SCANport device is connected to a drive operating DPI devices at 500k Baud							
3	DPI Loss Port 5	The device at DPI port 5 has stopped communicating with	Verify DPI device is present and functional at port 5.						
		the drive.	Configured with Par 391 [DPI CommLoss Cfg]						
		A SCANport device is connected to a drive operating DPI devices at 500k Baud							
64	DPI Loss Port 6	The device at DPI port 6 has stopped communicating with	Verify DPI device is present and functional at port 6.						
		the drive.	Configured with Par 391 [DPI CommLoss Cfg]						
		A SCANport device is connected to a drive operating DPI devices at 500k Baud							
5	Net Loss DPI P1	A communications fault has occurred between the	1. Verify network connection.						
		communication adapter at DPI port 1 and the network.	2. Verify status of network.						
			Configured with Par 392 [NetLoss DPI Cnfg]						
6	Net Loss DPI P2	A communications fault has occurred between the	1. Verify network connection.						
		communication adapter at DPI port 2 and the network.	2. Verify status of network.						
_			Configured with Par 392 [NetLoss DPI Cnfg]						
57	Net Loss DPI P3	A communications fault has occurred between the communication adapter at DPI port 3 and the network.	1. Verify network connection.						
			2. Verify status of network.						
			Configured with Par 392 [NetLoss DPI Cnfg]						
58	Net Loss DPI P4	A communications fault has occurred between the	1. Verify network connection.						
		communication adapter at DPI port 4 and the network.	2. Verify status of network.						
			Configured with Par 392 [NetLoss DPI Cnfg]						
59	Net Loss DPI P5	A communications fault has occurred between the	1. Verify network connection.						
		communication adapter at DPI port 5 and the network.	2. Verify status of network.						
			Configured with Par 392 [NetLoss DPI Cnfg]						
60	Net Loss DPI P6	A communications fault has occurred between the	1. Verify network connection.						
		communication adapter at DPI port 6 and the network.	2. Verify status of network.						
			Configured with Par 392 [NetLoss DPI Cnfg]						
61	Logix Out of Run	The DriveLogix controller is in a Non-Run mode. Non-Run	Clear fault						
	-	modes include program, remote-program and faulted	Configured with Par 386 [Lgx OutOfRunCnfg]						
20	Logiv Timocut	modes.							
62	Logix Timeout	The communication connection to the DriveLogix controller has timed out.	Configured with Par 387 [Lgx Timeout Cnfg]						

No.	Name	Description	Action			
63	Logix Closed	The DriveLogix controller has closed the Controller to	Verify drive is present in I/O			
		Drive connection.	Configured with Par 388 [Lgx Closed Cnfg]			
64	Logix Link Chng	A required link in the Controller to Drive Communication	Clear fault			
		Format has been modified.	Configured with Par 389 [Lgx LinkChngCnfg]			
65	HiHp In PhaseLs	AC Input Phase Loss - the AC input phase voltage has	1. Check for voltage on each AC input phase.			
		fallen.	2. Check the status of each external AC input fuse.			
			Configured with par 370 [HiHp InPhsLs Cfg]			
66	HiHp Bus Com Dly	Bus Communication Time Delay - the communication bus has delayed feedback, or bad communication quality.	Check the communication bus lines - 10 pin connector on the Main Control board, Fiber Optic Star Interface board, and fiber connections.			
67	HiHp Bus Link Ls	Bus Communication Link Loss - bus communication	Check the communication bus lines - 10 pin connector on			
		between the Fiber Optic Star Interface circuit board and the Voltage Feedback circuit board has stopped.	the Main Control board, Fiber Optic Star Interface board, and fiber connections.			
68	HiHp Bus CRC Er	Bus Communication CRC Error - too many Cycling Ring	Check the communication bus lines - 10 pin connector on			
		Checksum (CRC) errors have occurred in the communication bus.	the Main Control board, Fiber Optic Star Interface board, and fiber connections.			
		A fast power cycle may cause the 700S Main Control board				
		to attempt to communicate with the ASIC board before the ASIC board is energized.				
69	HiHp Bus WtchDog	Bus Communication Watchdog Error - no message	Check the communication bus lines - 10 pin connector on			
		(packets) came through in the communication bus -a	the Main Control board, Fiber Optic Star Interface board,			
70	HiHp Fan Fdbk Ls	watchdog error was detected. Fan Feedback Loss - an inverter cooling fan did not send	and fiber connections. 1. Check the communication bus lines - 10 pin connector on			
70	TILLIP FAIL FUDK LS	active feedback, or did not work.	the Main Control board, Fiber Optic Star Interface board,			
			and fiber connections.			
			2. Check the inverter cooling fans.			
71	HiHp Drv OvrLoad	Drive Overload - the drive's operating point has exceeded	Reduce mechanical load.			
		the intermittent current rating and a foldback to the continuous rating in Par 400 [Rated Amps] has occurred.				
72	HiHp PwrBd PrcEr	Power board Processor Error - a processor on the Fiber	Replace the Fiber Optic Star Interface circuit board.			
12		Optic Star Interface circuit board has detected a self diagnostic problem.				
73	HiHp PrChrg Cntc	Precharge Contactor Fault - the precharge contactor did not	If the drive is an AC input model, check the precharge			
		send back the active feedback.	resistor and contactor.			
			If the drive is a DC input model, check a jumper for			
			precharge bypass switch on the Fiber Optic Star Interface circuit board.			
74	HiHp PwrEE Error	Power EEPROM Error - the Cycling Ring Checksum (CRC)	1. Cycle power.			
		of the data stored in the Fiber Optic Star Interface circuit	2. Check the communication bus lines - 10 pin connector on			
		board EEPROM does not match the stored CRC.	the Main Control board, Fiber Optic Star Interface board, and fiber connections.			
75	HiHP PwrBd Otemp	Power board Over Temperature - the temperature of the Fiber Optic Star Interface circuit board has exceeded 85° C.	Lower the ambient temperature.			
76	HiHP HardwareVer	The left and right side inverter units have different current	Check the version of each inverter (left and right units), then			
		ratings, or the ASIC board on the power-board is not functioning.	replace the unit.			
77	HiHP CurrUnblnce	The output current between the left and right side inverter	Check motor wiring for each unit.			
		units are unbalanced (20% of current feedback rating, e.g. $184A = 920A * 0.2$).				
78	HiHP VoltUnblnce	The bus voltage for the left and right side inverter units is	Check input power and wiring for each unit.			
-		unbalanced (6% of normal bus voltage, e.g. 41Vdc = 675Vdc * 0.06).				
79	HiHP Bus Data	Communication Bus data are mismatched between left side	Check communication bus lines - 10 pin connector on Main			
		unit and right side unit.	Control board, Fiber Optic Star Interface board and fiber connections.			
81	+ Soft Over Trvl	(Motion Only)	Configured with Par 395 [+Sft OvrTrvlCnfg]			
		Position feedback exceeds the maximum positive travel setting, Par 694 [Motn Mx Pos Trvl].				

No.	Name	Description	Action					
82	- Soft Over Trvl	(Motion Only) Position feedback, exceeds the maximum negative travel setting, Par 695 [Motn Mx Neg Trvl].	Configured with Par 396 [-Sft OvrTrvICnfg]					
83	+ Hard Over Trvl	(Motion Only) Signal for the hardware positive over travel appears on a digital input.	Configured with Par 397 [+Hrd OvrTrvlCnfg]					
84	- Hard Over Trvl	(Motion Only) Signal for the hardware negative over travel appears on a digital input.	Configured with Par 398 [-Hrd OvrTrvlCnfg]					
85	Position Error	(Motion Only)	Verify the value in Par 696 [Motn PositErrTol].					
		Par 769 [Position Error] exceeded Par 696 [Motn PositErrTol].	Configured with Par 399 [Position ErrCnfg]					
86	Drive Homing	When the drive is in Drive Homing mode (Par 740 / bit 24 or bit 27 is On), the Drive Homing Alarm triggers and the drive moves to a home position automatically.	Check Par 740 / bit14 "Find Home" or bit 27 "Return Home".					
88	Stahl Optics	Linear Stahl Encoder detected a fault. Par 291 [Lin1Stahl	1. Reconnect encoder or replace encoder.					
		Status] shows the details of the fault.	2. Reconnect option feedback card.					
92	Ride Thru	The bus voltage has dropped to the Ride-Through level specified in Par 408 [Power Loss Level].	Check the AC input voltage and DC bus voltage.					
93	+/- 12volt Power Alarm	The12V DC control voltage is outside the tolerance range (Alarm). The positive voltage power exceeds +15.50 V DC. The negative voltage power exceeds -15.50V DC.	-					
94	Analog In 1 Loss	Analog Input channel 1 is lost. For configuration of Analog	Check condition of Analog Input channel 1.					
		Input channel 1, see Par 1093 [Anlg In1LossCnfg].	Change configuration for parameter 1093 [Anlg In1LossCnfg].					
95	Analog In 2 Loss	Analog Input channel 2 is lost. For configuration of Analog	Check condition of Analog Input channel 2.					
		Input channel 2, see Par 1094 [Anlg In2LossCnfg].	Change configuration for parameter 1094 [Anlg In2LossCnfg].					
96	Analog In 3 Loss	Analog Input channel 3 is lost. For configuration of Analog	Check condition of Analog Input channel 3.					
		Input channel 3, see Par 1095 [Anlg In3LossCnfg].	Change configuration for parameter 1095 [Anlg In3LossCnfg].					
129	Faults Cleared	Indicates that all faults have been cleared.	*Informational only.					
130	Fault Q Cleared	Indicates that the fault queue has been cleared.	*Informational only.					
131	Alarm Cleared	Indicates that all alarms have been cleared.	*Informational only.					
132	Alarm Q Cleared	indicates that the alarm queue has been cleared.	*Informational only.					

No.	Name	Description	Action (if appropriate)						
1	PrechargeActv	The drive received a start command while in the DC bus precharge state. See <u>Table 1.C on page 1-16</u> for more information on this fault.	-						
2	Auxiliary In	Auxiliary input interlock is open.	Check remote wiring.						
3	Power Loss	DC bus voltage remained below the value of parameter 186 [Power Loss Volts] for longer than the time in parameter 185 [Power Loss Time]. Enable/Disable this fault in parameter 238 [Fault Config 1]. See publication 20C-PM001, <i>Programming Manual - PowerFlex 700H</i> for parameter descriptions.	Monitor the incoming AC line for low voltage or line power interruption.						
4	UnderVoltage	DC bus voltage fell below the minimum value of 333V for 400/480V drives and 461V for 600/ 690V drives. See <u>Table</u> <u>1.D on page 1-16</u> for more information on this fault. Enable/ Disable this fault in parameter 238 [Fault Config 1]. See publication 20C-PM001, <i>Programming Manual -</i> <i>PowerFlex 700H</i> for parameter descriptions.							
5	OverVoltage	DC bus voltage exceeded maximum value. See <u>Table 1.E</u> on page 1-16 for more information on this fault.	Monitor the AC line for high line voltage or transient conditions. Bus overvoltage can also be caused by motor regeneration. Extend the decel time or install a dynamic brake option.						
6	Motor Stall	The motor is operating at high current and low frequency	1. Run an Autotune.						
		and is not accelerating. See <u>Table 1.F on page 1-16</u> for more information on this fault.	2. Reduce the Load.						
7	MotorOverload	Internal electronic overload trip. You can enable/disable this	1. Run an Autotune.						
		fault with parameter 238 [Fault Config 1].	 Verify the settings of parameters 48 [Motor OL Factor] and 47 [Motor OL Hertz]. 						
			 Reduce the load so that the drive output current does not exceed the current set by the value in parameter 42 [Motor NP FLA]. 						
8	HeatsinkOvrTp	The heatsink temperature has exceeded the maximum allowable value.	1. Verify that the maximum ambient temperature has not been exceeded.						
		85 degrees C = Alarm 90 degrees C = Fault See <u>Table 1.G on page 1-16</u> for more information on this	2. Check the fans (including the ASIC board on frame 10 and higher drives).						
		fault.	3. Check for an excess load.						
			4. Check the carrier frequency.						
9	IGBT OverTemp	The output transistors have exceeded their maximum operating temperature due to an excessive load.	1. Verify that the maximum ambient temperature has not been exceeded.						
		See <u>Table 1.H on page 1-17</u> for more information on this fault.	2. Check the fan(s).						
10			3. Check for an excess load.						
10	System Fault	A hardware problem exists in the power structure. See Table 1.1 on page 1-17 for more information on this	1. Cycle the power.						
		fault.	2. Verify the fiber optic connections.						
			3. Contact Technical Support.						
12	OverCurrent	The drive output current has exceeded the hardware	 If the problem persists, replace the drive. Check programming for an excess load, improper DC boost 						
12	OverGuitent	current limit. See <u>Table 1.J on page 1-18</u> for more information on this fault.	setting, DC brake voltage set too high or other causes of excess current. Check for shorted motor leads or a shorted motor.						
13	Ground Fault	A current path to earth ground exists that is greater than 50% of the drive's heavy duty rating. The current must appear for 800ms before the drive will fault. See <u>Table 1.K on page 1-19</u> for more information on this fault.	Check the motor and external wiring to the drive output terminals for a grounded condition.						
14	InverterFault	Hardware problem in the power structure.	1. Cycle the power.						
			2. Contact Technical Support.						
			3. If the problem persists, replace the drive.						

Addressing 700H Faults

No.	Name	Description	Action (if appropriate)
15	Load Loss	Do not use this fault in PowerFlex 700H applications. See <u>Table 1.L on page 1-19</u> for more information on this fault.	Check that parameter 238 [Fault Config 1] / bit 0 "Power Loss" and parameter 259 [Alarm Config 1] / bit 13 "Load Loss" are set to zero.
16	Motor Therm	The option board thermistor input is greater than the limit.	1. Check to ensure that the motor is cooling properly.
			2. Check for an excess load.
			3. Verify the thermistor connection. If the thermistor connection on the option board is not used, it must be shorted.
17	Input Phase	One input line phase is missing.	1. Check all user-supplied fuses
		See <u>Table 1.M on page 1-19</u> for more information on this fault.	2. Check the AC input line voltage.
19	Unbalanced	An imbalance between the power modules exists.	1. Check for DC voltage imbalance between the power modules.
			2. Check for current output imbalance between the power modules.
21	OutPhasMissng	There is zero current in one of the output motor phases.	1. Check the motor wiring.
		See <u>Table 1.N on page 1-19</u> for more information on this fault.	2. Check the motor for an open phase.
22	NP Hz Cnflct	is greater than 26.	ratio of parameter 43 [Motor NP Hertz] to 55 [Maximum Freq]
23	MaxFreqCnflct	The sum of parameters 82 [Maximum Speed] and 83 [Overs Freq] or lower [Maximum Speed] and/or [Overspeed Limit] s	o that the sum is less than or equal to [Maximum Freq].
24	Decel Inhibit	The drive cannot follow the commanded decel due to bus	1. Verify that the input voltage is within the specified limits.
		limiting.	2. Verify that the system ground impedance follows the proper grounding techniques.
			3. Disable bus regulation and/or add a dynamic brake resistor and/or extend the deceleration time.
25	OverSpd Limit	Functions such as Slip Compensation or Bus Regulation have attempted to add an output frequency adjustment greater than the value programmed in parameter 83 [Overspeed Limit].	Remove the excessive load or overhauling conditions or increase the value in [Overspeed Limit].
26	VHz Neg Slope	Parameter 53 [Motor Cntl Sel] = "Custom V/Hz" & the V/Hz s	slope is negative.
27	SpdRef Cnflct	[Speed Ref x Sel] or [PI Reference Sel] is set to "Reserved".	·
28	BrakResMissing	No brake resistor has been detected.	1. Program [Bus Reg Mode x] to not use the brake option.
		See <u>Table 1.0 on page 1-19</u> for more information on this fault.	2. Install a brake resistor and set parameter 163 [DB Resistor Type] to 1 "External Res" (frame 9 drives only).
29	Anlg In Loss	An analog input is configured to fault on a signal loss. A	1. Check parameter settings.
		signal loss has occurred. Configure this fault with [Anlg In x Loss].	2. Check for broken/loose connections at the inputs.
30	MicroWatchdog	A microprocessor watchdog timeout has occurred.	1. Cycle the power.
		See <u>Table 1.P on page 1-19</u> for more information on this fault.	2. Replace the Main Control board.
31	IGBT Temp HW	The drive output current has exceeded the instantaneous	1. Check for an excess load.
		current limit.	2. Raise the value set in either [Accel Time x] parameters.
		See <u>Table 1.Q on page 1-19</u> for more information on this fault.	3. Parameter 53 [Motor Cntl Sel] may need to be set to "Custom V/Hz".
			4. Verify the values set in parameters 62 [IR Voltage Drop] and 63 [Flux Current Ref].
			5. Contact Technical Support.
32	Fan Cooling	Fan is not energized at start command.	1. Check the status LEDs on the fan inverter(s).
		See <u>Table 1.R on page 1-20</u> for more information on this fault.	2. Check the fan(s).
33	AutoReset Lim	The drive unsuccessfully attempted to reset a fault and	Correct the cause and manually clear the fault.
		resumed running for the programmed number of [Auto Rstrt Tries]. You can enable/disable this fault with parameter 238 [Fault Config 1].	

No.	Name	Description	Action (if appropriate)						
34	CAN Bus Flt	A sent message was not acknowledged.	1. Cycle the power.						
		See <u>Table 1.S on page 1-20</u> for more information on this fault.	2. Replace the Main Control board.						
37	HeatsinkUndTp	The ambient temperature is too low. See <u>Table 1.T on page 1-20</u> for more information on this fault.	Raise the ambient temperature.						
44	Device Change	The new power unit or option board installed is a different type. See <u>Table 1.U on page 1-20</u> for more information on this fault.	Clear the fault and reset the drive to the factory defaults.						
45	Device Add	A new option board was added. See <u>Table 1.U on page 1-20</u> for more information on this fault.	Clear the fault.						
47	NvsReadChksum	There was an error reading parameters 9 [Elapsed MWh] and 10 [Elapsed Run Time] from EEPROM. See <u>Table 1.V on page 1-21</u> for more information on this fault.	 Cycle the power. Replace the Main Control board. 						
48	ParamsDefault	The drive was commanded to write default values to EEPROM.	 Clear the fault or cycle power to the drive. Program the drive parameters as needed. 						
54	Zero Divide	This event occurred because a mathematical function had a	· · ·						
54	Zero Divide	dividend of zero.	, , , , , , , , , , , , , , , , , , , ,						
59	Gate Disable		 Replace the main Control board. Check the motor. 						
59	Gate Disable	Both of the digital gate disable inputs (SD-1 and SD-2) are not enabled on the 20C-DG1 option board.							
			2. Verify that the option board is properly wired.						
			 Replace the option board. See Appendix E - "Instructions for ATEX Approved PowerFlex 700H Drives in Group II Category (2) Applications with ATEX Approved Motors" in the <i>PowerFlex 700H/S High Power Drives Installation</i> <i>Manual</i>, publication PFLEX-IN006 for information on installing this option board. 						
60	Hrdwr Therm	The thermistor input is activated (>4 k Ω) on the 20C-DG1	1. Check the motor.						
		option board.	2. The resistance of the thermistor input must go below 2 $k\Omega$ before the drive can be reset.						
63	Shear Pin	The value programmed in parameter 148 [Current Lmt Val] has been exceeded. You can enable/disable this fault with parameter 238 [Fault Config 1].	Check the load requirements and the value in [Current Lmt Val].						
65	I/O Removed	An I/O option board has been removed.	Clear the fault.						
70	Power Unit	One or more of the output transistors were operating in the active region instead of desaturation. This can be caused by excessive transistor current or insufficient base drive voltage. See <u>Table 1.X on page 1-21</u> for more information on this fault.	Clear fault.						
71	Periph Loss	The communications card has a fault on the network side.	1. Check the DPI device event queue and corresponding fault information for the device.						
81	Port DPI Loss	The DPI port has stopped communicating. A SCANport device was connected to a drive operating DPI devices at 500k baud.	adapters, Main control board or complete drive as required.						
			 Check the HIM connection. If an adapter was intentionally disconnected and the [Logic Mask] bit for that adapter is set to "1", this fault will occur. To disable this fault, set the bit in parameter 276 [Logic Mask] for the adapter to "0". 						
94	Hardware Enbl	An enable signal is missing from the control terminal block. See <u>Table 1.Y on page 1-22</u> for more information on this fault.	 Check the control wiring. Check the position of the hardware enable jumper. 						
95	AutoT Rs Stat	The Autotune Rs Static Test has failed.	 Check the digital input programming. Verify that the motor is not rotating when autotune is anabled 						
			enabled. 2. Check the motor connections.						

No.	Name	Description		Action <i>(i</i>	f approp	oriate)									
96	AutoT Lm Rot	The Autotune Lm rotate test has failed.	-	1. Check the motor nameplate data.											
								2. Check the motor connections.							
		:) x 33 sec.						
						-	otor to 4	0 Hz.							
97	AutoT MagRot	The Autotune magnetizing current rotate test has failed		1. Check			•								
				2. Check											
			;		hat the ote abov		me < ((Base S	speed/40) x 33 sec.					
98	AutoT Saturat	The Autotune saturation curve test has failed.		1. Check	the mot	or name	plate	data.							
				2. Check	the mot	or conne	ections	6.							
99	UserSet Timer	A User Set load or save was not completed in less tha seconds.		Attempt t f this erro					1ain Con	trol board.					
100	Param Chksum	The checksum read from the Main Control board does	not	1. Restor	e the dri	ve to the	e facto	ory defa	ults.						
		match the checksum calculated.	. 1	2. Cycle	he powe	er.									
		See <u>Table 1.Z on page 1-22</u> for more information on th fault.	is (3. Reload	I User S	et if use	d.								
104	PwrBrd Chksum	1. Cycle	he powe	er.											
		checksum calculated from the EEPROM data. See <u>Table 1.U on page 1-20</u> for more information on this			t Techni	cal Sup	port.								
		is	3. If the problem persists, replace the drive.												
106	MCB-PB Config The drive rating information stored on the power board is				1. Reset the fault or cycle the power.										
	-	incompatible with the Main Control board.			2. Replace the Main Control board.										
		See <u>Table 1.AA on page 1-22</u> for more information on fault.	his												
107	New IO Option	A New option board was added to the Main Control bo	ard.	I. Restore the drive to the factory default					ults.						
		See <u>Table 1.U on page 1-20</u> for more information on the fault.		2. Reprogram parameters as necessary.											
113	Fatal App	A Fatal Application error has occurred.		Replace	lace the Main Control board.										
114	AutoT Enable	Autotune is enabled but has not started.			ss the Start key within 20 seconds of enabling autotu										
120	I/O Change	An option board has been replaced.		Reset the fault.											
	, i i i i i i i i i i i i i i i i i i i	See Table 1.U on page 1-20 for more information on the fault.	is												
121	I/O Comm Loss	An I/O board lost communications with the Main Contr		1. Check the connector.											
121	1/0 00mm 2000	board.		2. Check for induced noise.											
				3. Replac				ontrol h	noard						
133	DigIn CnflctA	Digital input functions are in conflict. Combinations ma						ontior							
	5		g 1 and	=											
			5	Acc2/				Jog	Jog	Fwd/					
			0 / D	Dec2		Decel 2	Jog*	Fwd	Rev	Rev					
			c2 / Deo cel 2		4	#			_						
			cel 2	ţi.											
		Jo		-9L				#	4						
			g Fwd				.			<u></u>					
			g Rev				÷.								
			d/Rev				-	#	4						

No.	Name	Description		Actio	n <i>(if a</i> j	prop	riate)					
134	DigIn CnflctB	A digital Start input has been configur are marked with a ". " and will cause		or oth	ier fund	ctions	are in	i confli	ct. Cor	mbinati	ons tha	conflic
			* Jog 1 an	1 and Jog 2								
				Start	Stop-	Run	Run Fwd	Run Rev	Jog*	Jog Fwd	Jog Rev	Fwd/ Rev
			Start			‡	.			4	4	
			Stop-CF									
			Run	. ‡ .			.	.‡.		jį.	ji.	
			Run Fwd			٤						4
			Run Rev			ļ.			.			ψ
			Jog*				.	. ‡.				
			Jog Fwd			\$						
			Jog Rev			ļ.						
			Fwd/Rev				\$.	.				
		Speed Select 1Jog ForwardAcc2 / Dec2 Speed Select 2Jog ReverseAccel 2 Speed Select 3RunDecel 2 Run ForwardStop Mode B										
136	BipolarCnflct	Parameter [Direction Mode] is set to " configured: "Fwd/Reverse," "Run Forw							wing di	igital in	out func	tions is
139	UserSetCflct	Not all digital inputs and datalinks in the settings for parameters 361-366, 300-	ne user set you are savi	<u> </u>			<u> </u>		must b	e save	d with tł	ne same
143	TB Man Conflict	Parameter 96 [TB Man Ref Sel] is usin that is programmed for another function		Check	the pa	arame	eter se	ettings	to avo	id probl	em.	
147	Start AtPwrUp	Parameter 168 [Start At PowerUp] is e	enabled. The drive may	start a	at any	time v	vithin	10 sec	onds o	of drive	poweru	р.
148	IntDB OvrHeat	The drive has temporarily disabled the value.	e DB regulator because	the re	esistor	temp	erature	e has (exceed	led a p	redeterr	nined
149	Waking	The Wake timer is counting toward a	value that will start the c	drive.								
150	Sleep Config	The Wake timer is counting toward a value that will start the drive. Sleep/Wake configuration error. With parameter 178 [Sleep Wake Mode] = "Direct," possible causes include stopped and parameter 180 [Wake Level] < parameter 182 [Sleep Level]. "Stop=CF," "Run," "Run Forward," of Reverse" is not configured in [Digital Inx Sel].										

PowerFlex 700H Fault Subcodes

Fault Subcodes can be viewed in parameters 543, 545, 547, 549, 551, 553, 555, 557 [Fault x Subcode]. Each of these parameters corresponds with parameters 243, 245, 247, 249, 251, 253, 255, 257 [Fault x Code]. For example, if parameter 243 [Fault 1 Code] displays "5" and parameter 543 [Fault 1 Subcode] displays "273", an over voltage fault (F5) has occurred in the power unit of the drive.

Table 1.C Precharge Active Fault (F1) Subcodes

Subcode	Description
273	The precharge circuit in the power unit is active
289	The precharge circuit in power unit 1 is active
305	The precharge circuit in power unit 2 is active

Table 1.D Under Voltage Fault (F4) Subcodes

Subcode	Description
273	The DC Bus voltage in the power unit is too low while the drive is in a run state
529	The DC Bus voltage in the power unit is too low while the drive is in a run state
545	The DC Bus voltage in power unit 1 is too low while the drive is in a run state
561	The DC Bus voltage in power unit 2 is too low while the drive is in a run state
785	The DC Bus voltage in the power unit fell too low during a fast stop

Table 1.E Over Voltage Fault (F5) Subcodes

Description	
There is an over voltage in the power unit	
There is an over voltage in power unit 1	
There is an over voltage in power unit 2	
There is an over voltage in the power unit	

Table 1.F Motor Stall Fault (F6) Subcode

Subcode	Description
400	The motor is operating at high current and low frequency and is not accelerating

Table 1.G Heatsink Over Temperature Fault (F8) Subcodes

Subcode	Description	
272, 273	There is a heatsink over temperature in the power unit	
274	There is a heatsink over temperature on the Power board of the power unit	
275	There is a heatsink over temperature in the U phase of the power unit (typical of frame 11 and 13 drives)	
276	There is a heatsink over temperature in the V phase of the power unit (typical of frame 11 and 13 drives)	
277	There is a heatsink over temperature in the W phase of the power unit (typical of frame 11 and 13 drives)	
288, 289	There is a heatsink over temperature in power unit 1 (typical of frame 12 and 14 drives)	
290	There is a heatsink over temperature on the Power board of power unit 1 (typical of frame 12 and 14 drives)	
291	There is a heatsink over temperature in the U phase of power unit 1 (typical of frame 12 and 14 drives)	
292	There is a heatsink over temperature in the V phase of power unit 1 (typical of frame 12 and 14 drives)	
293	There is a heatsink over temperature in the W phase of power unit 1 (typical of frame 12 and 14 drives)	
304, 305	There is a heatsink over temperature in power unit 2 (typical of frame 12 and 14 drives)	

Subcode	Description
306	There is a heatsink over temperature on the Power board of power unit 2 (typical of frame 12 and 14 drives)
307	There is a heatsink over temperature in the U phase of power unit 2 (typical of frame 12 and 14 drives)
308	There is a heatsink over temperature in the V phase of power unit 2 (typical of frame 12 and 14 drives)
309	There is a heatsink over temperature in the W phase of power unit 2 (typical of frame 12 and 14 drives)
530	There is a Thermistor over temperature on the Power board (typical of frame 12 and 14 drives)

Table 1.H IGBT Over Temperature Fault (F9) Subcode

Subcode	Description	
273	The output transistors have exceeded their maximum operating temperature due to an excessive load	

Table 1.I	System Fault	(F10) Subcodes	

Subcode	Description Action		
273	There is an output phase feedback fault from the motor cables		
275	There is an output phase feedback fault from the U phase motor cable (typical of frame 11 and 13 drives)		
276	There is an output phase feedback fault from the V phase motor cable (typical of frame 11 and 13 drives)		
277	There is an output phase feedback fault from the W phase motor cable (typical of frame 11 and 13 drives)		
1042	There is a disturbance at the ASIC fault-input of the Power board - ribbon cable/software		
1058	There is a disturbance at the ASIC fault-input of the Power board in power unit 1 - ribbon cable/software (typical of frame 12 and 14 drives)		
1074	There is a disturbance at the ASIC fault-input of the Power board in power unit 2 - ribbon cable/software (typical of frame 12 and 14 drives)		
1090	There is a disturbance at the ASIC fault-input of the Control board - application software		
1298	There is too much disturbance in system bus traffic on the Power board		
1314	There is too much disturbance in system bus traffic on the Power board in power unit 1 (typical of frame 12 and 14 drives)		
1330	There is too much disturbance in system bus traffic on the Power board in power unit 2 (typical of frame 12 and 14 drives)		
1553	The charging relay feedback is not working		
1810	The charging relay control is not set on the Power board		
1826	The charging relay control is not set on the Power board on power unit 1 (typical of frame 12 and 14 drives)		
1827	The charging relay control is not set configured on the Power board on power unit 2 (typical of frame 12 and 14 drives)		
2065	The Gate Driver board is without auxiliary voltage (Power ASIC-TRIN)		
2067	The Gate Driver board for the U phase is without auxiliary voltage (typical of frame 11 and 13 drives)		
2068	The Gate Driver board for the V phase is without auxiliary voltage (typical of frame 11 and 13 drives)		
2069	The Gate Driver board for the W phase is without auxiliary voltage (typical of frame 11 and 13 drives)		
2080	The Gate Driver board in power unit 1 is without auxiliary voltage.		
2081	The Gate Driver board in power unit 1 is without auxiliary voltage (typical of frame 12 and 14 drives)		
2083	The Gate Driver board for the U phase in power unit 1 is without auxiliary voltage (typical of frame 14 drives)		
2084	The Gate Driver board for the V phase in power unit 1 is without auxiliary voltage (typical of frame 14 drives)		
2085	The Gate Driver board for the W phase in power unit 1 is without auxiliary voltage (typical of frame 14 drives)		
2097	The Gate Driver board in power unit 2 is without auxiliary voltage (typical of frame 12 and 14 drives)		
2099	The Gate Driver board for the U phase in power unit 2 is without auxiliary voltage (typical of frame 14 drives)		
2100	The Gate Driver board for the V phase in power unit 2 is without auxiliary voltage (typical of frame 14 drives)		
2101	The Gate Driver board for the W phase in power unit 2 is without auxiliary voltage (typical of frame 14 drives)		
2370	The TX fiber optic cable connected to H6 on the 700H Control board is broken		
2594	The fiber optic cable connected to TRIP on the Star Coupler board for power unit 1 is broken (typical of frame 12 and 14 drives)		
2610	The fiber optic cable connected to TRIP on the Star Coupler board for power unit 2 is broken (typical of frame 12 and 14 drives)		
2834	The fiber optic cable connected to H5 on the ASIC board is broken		
7767	The safe disable inputs on the 20C-DG1 option board have been in a different state for more than 5 seconds. • Verify all connections to the 20C-DG01 option board • If this fault and subcode occurs again, replace the 20C-DG1 option board		

Subcode	Description	Action
8023	A thermistor short circuit has been detected on the 20C-DG1 option board.	 Verify the thermistor connections and correct if necessary Verify that the jumper at X10 is in the correct position
8279	The 20C-DG1 option board has been removed.	Set parameter 359 [20C-DG1 Status] to 1"Remove" and then back to 0 "Ready".
8535	There is an EEPROM error on the 20C-DG1 option board.	Replace the 20C-DG1 option board
8791	A supply voltage hardware problem has been detected on the 20C-DG1 option board.	Replace the 20C-DG1 option board
9047	A supply voltage hardware problem has been detected on the 20C-DG1 option board.	Replace the 20C-DG1 option board
9303	A supply voltage hardware problem has been detected on the 20C-DG1 option board.	Replace the 20C-DG1 option board
9559	A single hardware problem has been detected in the safe disable inputs on the 20C-DG1 option board.	Replace the 20C-DG1 option board. If this fault occurs again, replace the Main Control board.
9815	A single hardware problem has been detected in the safe disable inputs on the 20C-DG1 option board.	Replace the 20C-DG1 option board. If this fault occurs again, replace the Main Control board.
10071	A single hardware problem has been detected in the safe disable inputs on the 20C-DG1 option board.	Replace the 20C-DG1 option board. If this fault occurs again, replace the Main Control board.
10327	A single hardware problem has been detected in the safe disable inputs on the 20C-DG1 option board.	Replace the 20C-DG1 option board. If this fault occurs again, replace the Main Control board.
10583	A single hardware problem has been detected in the thermistor input on the 20C-DG1 option board.	Replace the 20C-DG1 option board
10839	A single hardware problem has been detected in the thermistor input on the 20C-DG1 option board.	Replace the 20C-DG1 option board
11096	A single hardware problem has been detected in the thermistor input on the 20C-DG1 option board.	Replace the 20C-DG1 option board
11351	A single hardware problem has been detected in the safe disable inputs or in the thermistor input on the 20C-DG1 option board.	Replace the 20C-DG1 option board. If this fault occurs again, replace the Main Control board.
11607	A single hardware problem has been detected in the safe disable inputs or in the thermistor input on the 20C-DG1 option board.	Replace the 20C-DG1 option board. If this fault occurs again, replace the Main Control board.
11863	A single hardware problem has been detected in the safe disable inputs or in the thermistor input on the 20C-DG1 option board.	Replace the 20C-DG1 option board. If this fault occurs again, replace the Main Control board.
12119	The 20C-DG1 option board has been mounted in an incompatible Main Control board that is not equipped with the Safe Disable function.	Replace the Main Control board.
12376	Parameter expander board, slot B, Therm Trip is set to OFF even if the jumper X12 is not cut.	

Table 1.J Over Current Fault (F12) Subcodes

Subcode	Description
272, 273	There is an over current in the power unit
275	There is an over current in the U phase of the power unit (typical of frame 11 and 13 drives)
276	There is an over current in the V phase of the power unit (typical of frame 11 and 13 drives)
277	There is an over current in the W phase of the power unit (typical of frame 11 and 13 drives)
288, 289	There is an over current in power unit 1 (typical of frame 12 drives)
291	There is an over current in the U phase of power unit 1 (typical of frame 14 drives)
292	There is an over current in the V phase of power unit 1 (typical of frame 14 drives)
293	There is an over current in the W phase of power unit 1(typical of frame 14 drives)
304, 305	There is an over current in power unit 2 (typical of frame 12 drives)
307	There is an over current in the U phase of power unit 2 (typical of frame 14 drives)
308	There is an over current in the V phase of power unit 2 (typical of frame 14 drives)
309	There is an over current in the W phase of power unit 2(typical of frame 14 drives)

Table 1.K Ground Fault (F13) Subcode

Su	lbcode	Description
27	3	There is a ground fault in the power unit
_		

Table 1.L Load Loss Fault (F15) Subcode

Subcode	Description
400	The motor underload protection has tripped

Table 1.M Input Phase Fault (F17) Subcodes

Subcode	Description	
273	One input line phase in the power unit is missing	
289	One input line phase in power unit 1 is missing	
305	One input line phase in power unit 2 is missing	
529	One input line phase in a regenerative power unit is missing	

Table 1.N Output Phase Missing Fault (F21) Subcode

Subcode	Description
273	There is zero current in one of the output motor phases in the power unit

Table 1.0 Brake Resistor Missing Fault (F28) Subcodes

Subcode	Description
273	No brake resistor has been detected (Frame 9 drives only)

Table 1.P Microprocessor Watchdog Fault (F30) Subcode

Subcode	Description
322	A microprocessor watchdog timeout has occurred on the Control board

Table 1.Q IGBT Temperature Hardware Fault (F31) Subcodes

Subcode	Description
272, 273	The output current has exceeded the instantaneous current limit in the power unit
275	The output current has exceeded the instantaneous current limit in the U phase of the power unit (typical of frame 11 and 13 drives)
276	The output current has exceeded the instantaneous current limit in the V phase of the power unit (typical of frame 11 and 13 drives)
277	The output current has exceeded the instantaneous current limit in the W phase of the power unit (typical of frame 11 and 13 drives)
288, 289	The output current has exceeded the instantaneous current limit in power unit 1 (typical of frame 14 drives)
291	The output current has exceeded the instantaneous current limit in the U phase of power unit 1 (typical of frame 14 drives)
292	The output current has exceeded the instantaneous current limit in the V phase of power unit 1 (typical of frame 14 drives)
293	The output current has exceeded the instantaneous current limit in the W phase of power unit 1 (typical of frame 14 drives)
304, 305	The output current has exceeded the instantaneous current limit in power unit 2 (typical of frame 12 and 14 drives)
307	The output current has exceeded the instantaneous current limit in the U phase of power unit 2 (typical of frame 14 drives)
308	The output current has exceeded the instantaneous current limit in the V phase of power unit 2 (typical of frame 14 drives)
309	The output current has exceeded the instantaneous current limit in the W phase of power unit 2 (typical of frame 14 drives)

Table 1.R Fan Cooling Fault (F32) Subcodes

Subcode	Description
273	The fan(s) in the power unit does not work according to feedback information
289	The fans in power unit 1 does not work according to feedback information (typical of frame 12 and 14 drives)
305	The fans in power unit 2 does not work according to feedback information (typical of frame 12 and 14 drives)

Table 1.S Communication Bus Fault (F34) Subcode

Subcode	Description
338	A sent message was not acknowledged.

Table 1.T Heatsink Under Temperature Fault (F37) Subcodes

Subcode	Description
272, 273	There is a heatsink under temperature in the power unit
275	There is a heatsink under temperature in the U phase of the power unit (typical of frame 11 and 13 drives)
276	There is a heatsink under temperature in the V phase of the power unit (typical of frame 11 and 13 drives)
277	There is a heatsink under temperature in the W phase of the power unit (typical of frame 11 and 13 drives)
288, 289	There is a heatsink under temperature in power unit 1 (typical of frame 12 and 14 drives)
291	There is a heatsink under temperature in the U phase of power unit 1 (typical of frame 14 drives)
292	There is a heatsink under temperature in the V phase of power unit 1 (typical of frame 14 drives)
293	There is a heatsink under temperature in the W phase of power unit 1 (typical of frame 14 drives)
304, 305	There is a heatsink under temperature in power unit 2 (typical of frame 12 and 14 drives)
307	There is a heatsink under temperature in the U phase of power unit 2 (typical of frame 14 drives)
308	There is a heatsink under temperature in the V phase of power unit 2 (typical of frame 14 drives)
309	There is a heatsink under temperature in the W phase of power unit 2 (typical of frame 14 drives)

Table 1.U Device Change (F44), Device Added (F45), I/O Option board Removed (F65), Power board Checksum (F104), New I/O Option board (F107) and I/O Option board Change (F120) Fault Subcodes

Subcode	Description
273	The power unit has been changed, added, removed, has experienced a checksum error, or is new and the parameters for the device/board remain unchanged.
274	The Power board has been changed, added, removed, has experienced a checksum error, or is new and the parameters for the device/board remain unchanged.
278	The circuit board in Slot A of the control unit has been changed, added, removed, has experienced a checksum error, or is new and the parameters for the device/board remain unchanged.
279	The circuit board in Slot B of the control unit has been changed, added, removed, has experienced a checksum error, or is new and the parameters for the device/board remain unchanged.
282	The circuit board in Slot E of the control unit has been changed, added, removed, has experienced a checksum error, or is new and the parameters for the device/board remain unchanged.
289	A device or circuit board in power unit 1 has been changed, added, removed, has experienced a checksum error, or is new and the parameters for the device/board remain unchanged. (typical of frame 12 and 14 drives)

Subcode	Description
290	The Power board in power unit 1 has been changed, added, removed, has experienced a checksum error, or is new and the parameters for the device/board remain unchanged. (typical of frame 12 and 14 drives)
294	The circuit board in Slot A of the control unit has been changed, added, removed, has experienced a checksum error, or is new and the parameters for the device/board remain unchanged. (typical of frame 12 and 14 drives)
295	The circuit board in Slot B of the control unit has been changed, added, removed, has experienced a checksum error, or is new and the parameters for the device/board remain unchanged. (typical of frame 12 and 14 drives)
298	The circuit board in Slot E of the control unit has been changed, added, removed, has experienced a checksum error, or is new and the parameters for the device/board remain unchanged. (typical of frame 12 and 14 drives)
305	A device or circuit board in power unit 2 has been changed, added, removed, has experienced a checksum error, or is new and the parameters for the device/board remain unchanged.
321	A device or circuit board has been changed, added, removed, has experienced a checksum error, or is new and the parameters for the device/board remain unchanged.
322	The Control board has been changed, added, removed, has experienced a checksum error, or is new and the parameters for the device/board remain unchanged.
326	The circuit board in Slot A of the control unit has been changed, added, removed, has experienced a checksum error, or is new and the parameters for the device/board remain unchanged.
327	The circuit board in Slot B of the control unit has been changed, added, removed, has experienced a checksum error, or is new and the parameters for the device/board remain unchanged.
330	The circuit board in Slot E of the control unit has been changed, added, removed, has experienced a checksum error, or is new and the parameters for the device/board remain unchanged.
369	The Star Coupler board on the control unit has been changed, added, removed, has experienced a checksum error, or is new and the parameters for the device/board remain unchanged. (typical of frame 12 and 14 drives)
370	The Star Coupler board has been changed, added, removed, has experienced a checksum error, or is new and the parameters for the device/board remain unchanged. (typical of frame 12 and 14 drives)
528	The power level in power unit 2 is not equal to the power level in power unit 1 after a microprocessor reset. (typical of frame 12 and 14 drives)
561	The power level in power unit 2 is not equal to the power level in power unit 1 after a microprocessor reset. (typical of frame 12 and 14 drives)

Table 1.V NVS Read Checksum Fault (F47) Subcode

Subcode	Description
322	An operating time or energy counter checksum error has occurred on the Control board

Table 1.W Motor Over Temperature Fault (F16) Subcode

Subcode	Description
400	The motor is operating at high current and low frequency and is not accelerating

Table 1.X Power Unit Fault (F70) Subcodes

Subcode	Description
272, 273	There is saturation in the power unit
275	There is saturation in the U phase of the power unit (typical of frame 11 and 13 drives)
276	There is saturation in the V phase of the power unit (typical of frame 11 and 13 drives)
277	There is saturation in the W phase of the power unit (typical of frame 11 and 13 drives)
288, 289	There is saturation in power unit 1 (typical of frame 12 and 14 drives)
291	There is saturation in the U phase of power unit 1 (typical of frame 14 drives)
292	There is saturation in the V phase of power unit 1 (typical of frame 14 drives)
293	There is saturation in the W phase of power unit 1 (typical of frame 14 drives)

SubcodeDescription304, 305There is saturation in power unit 2 (typical of frame 12 and 14 drives)307There is saturation in the U phase of power unit 2 (typical of frame 14 drives)308There is saturation in the V phase of power unit 2 (typical of frame 14 drives)309There is saturation in the W phase of power unit 2 (typical of frame 14 drives)

Table 1.Y Hardware Enable Fault (F94) Subcode

Subcode	Description
338	An hardware enable signal is missing from the control terminal block

Table 1.Z Parameter Checksum Fault (F100) Subcodes

Subcode	Description		
322	A firmware interface powerdown variable checksum error has occurred on the Control board		
578	A firmware interface variable checksum error has occurred on the Control board		
834	A system powerdown variable checksum error (panel menu index, fault history pointer) has occurred on the Control board		
1090	A system parameter checksum error (multimonitor, panel default pages) has occurred on the Control board		
1346	An application defined powerdown, variable checksum error has occurred on the Control board		
1602	An application defined powerdown, variable checksum error has occurred on the Control board		
2626	A system parameter checksum error (fault history entries, device valid, system menu parameters) has occurred on the Control board		

Table 1.AA Main Control board - Power board Configuration Fault (F106) Subcode

Subcode	Description
385	The software and the power unit are incompatible

Common Drive Conditions and Corrective Actions

No Output Voltage

The drive has no output voltage to the motor, even though the drive indicates that the motor is running.

Diagnostic Procedure	Corrective Action	
1. Measure the DC bus voltage.	If the DC bus is not within specification, repair or replace the Rectifying module as needed.	
	Otherwise, continue with step 2.	
2. Measure the AC output voltage at the motor terminals using a VAC RMS meter and compare the measurement to the AC output voltage displayed on the HIM (Par 307 [Output Voltage] for 700S drives, Par 6 [Output Voltage] for 700H drives).	If the AC output voltage at the motor terminals does not match the output voltage displayed on the HIM, repair or replace the Output Power modules as needed. Otherwise, continue with step 3.	
3. Verify that there are no loose or missing connections between the Gate Driver board and ASIC board and the Gate Driver board and Adapter board.	If there are loose or missing connections, or a board has been damaged, replace the loose or missing connections, or repair or replace any of the boards as needed.	
	Otherwise, continue with step 4.	
board located on the power structu	over and mounting screws on the ASIC re are energized at (-) DC bus potential high njury, or death exists if someone comes into If the test is not completed successfully, replace the Output Power modules.	
Components" on page 2-2 for the Output Power modules.	Otherwise, continue with step 5.	
5. Check the motor windings and motor cables with a high resistance DVM (megger).	Repair or replace the motor as needed.	

Blown Input Fuse

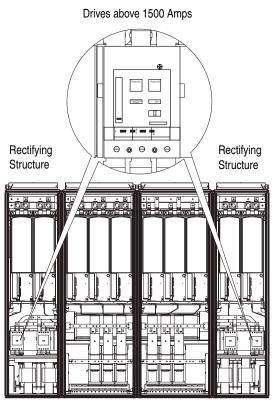
If the drive causes the AC input line fuse to open, complete the following tests to verify that the power structure is functioning properly before replacing the AC input line fuse and reapplying power to the drive.

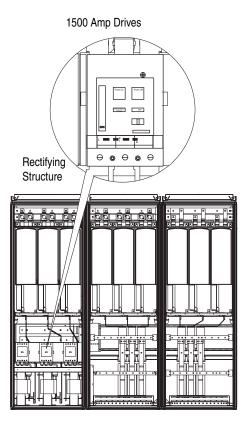
Diagnostic Procedure	Corrective Action	
1. Disconnect the motor leads.	Continue with step 2.	
 Complete the "Conducting Forward and Reverse Biased Diode Tests for Major Power Components" on <u>page 2-2</u> for the Rectifier module. 	If the test is not completed successfully, replace the Rectifying module. Continue with step 3.	
 Complete the "Conducting Forward and Reverse Biased Diode Tests for Major Power Components" on page 2-2 for the Output Power modules. 	If the test is not completed successfully, replace the Output Power modules. Continue with step 4.	
4. Examine the DC bus capacitors.	If there is evidence of charring and damaged reliefs, replace the DC bus capacitors. Otherwise, continue with step 5.	
5. Check the motor windings and motor cables with a high resistance DVM (megger).	Repair or replace the motor as needed. Otherwise, continue with step 6.	
 6. Disconnect and check the AC choke with a high resistance DVM (megger). Verify that the line to line is open Verify that the line to ground is open Verify that the input to output is low resistance, but not shorted 	Repair or replace the AC choke as needed. Continue with step 7.	
7. Reconnect the AC choke and motor leads.		

No HIM Display

If the HIM does not display, complete the following procedure to verify that power is available.

Diagnostic Procedure	Corrective Action	
1. Measure the DC bus voltage.	If the DC bus is not within specification, repair or replace the Rectifying module as needed.	
	Otherwise, continue with step 2.	
2. Measure the DC voltage supply at connector X4 on the DPI circuit board on the back of the HIM cradle. The voltage should be approximately 12V DC.	If the DC voltage is incorrect: • PowerFlex 700S drives - Replace the High Power Fiber Optic Interface circuit board • PowerFlex 700H drives - Replace the output power modules Otherwise, continue with step 3.	
3. Check for loose or missing connections between the DPI circuit board and the High Power Fiber Optic Interface circuit board.	If there are loose or missing connections, or a board has been damaged, replace the loose or missing connections, or repair or replace any of the boards as needed. Otherwise, Replace the HIM.	


Molded Case Circuit Breakers (MCCBs) Trips


The electronic trip unit will open the circuit breaker in the case of a drive overload/overcurrent condition. When a voltage drop (U < 0.7 x Un) or loss of the main supply occurs, the undervoltage release coil of the circuit breakers will open. The trip indicator contacts of the circuit breakers are connected in series. Therefore, if one circuit breakers trips due to an undervoltage or overload/overcurrent condition, all circuit breakers will open/trip.

If the circuit breakers have opened due to an overcurrent fault, the condition that caused the fault must be corrected and the fault cleared before the circuit breakers can be reset and the drive started. In this case, refer to "Charging the MCCB Motor Operators" in the PowerFlex 700S / 700H AC Drive Installation Manual, publication PFLEX-IN006.

Also, refer <u>Appendix E</u> - <u>MCCB Circuit Breakers</u> for more information and to <u>Figure B.6 on page B-7</u> for a schematic diagram of the MCCBs.

Technical Support Options

Technical Support Wizards

If you are connected to a drive via DriveExplorer[™] or DriveExecutive[™], you can run a Tech Support wizard to gather information that will help diagnose problems with your drive and/or peripheral device. The information gathered by the wizard is saved as a text file and can be emailed to your remote technical support contact. (See <u>What You Need When You</u> <u>Call Tech Support on page 1-26</u> for more information.)

To run a Tech Support wizard in DriveExplorer, select Wizards from the Actions menu. In DriveExecutive, select Wizards from the Tools menu. Or, click the

* -

button. Follow the prompts to complete the wizard.

What You Need When You Call Tech Support

When you contact Technical Support, please be prepared to provide the following information:

- Order number
- Product catalog number and drives series number (if applicable)
- Product serial number •
- Firmware revision level
- Most recent fault code
- Your application

The data contained in the following parameters will help in initial troubleshooting of a faulted PowerFlex 700H drive. You can use the table below to record the data provided in each parameter listed.

Param(s)	Name	Description	Parameter Data
224	Fault Frequency	Captures and displays the output speed of drive at time of last fault.	
225	Fault Amps	Captures and displays motor amps at time of last fault.	
226	Fault Bus Volts	Captures and displays the DC bus voltage of drive at time of last fault.	
227	Status 1 @ Fault	Captures and displays [Drive Status 1] bit pattern at time of last fault.	
228	Status 2 @ Fault	Captures and displays [Drive Status 2] bit pattern at time of last fault.	
229	Alarm 1 @ Fault	Captures and displays [Drive Alarm 1] bit pattern at time of last fault.	
230	Alarm 2 @ Fault	Captures and displays [Drive Alarm 2] bit pattern at time of last fault.	
243	Fault 1 Code	A code that represents the fault that tripped the drive.	
245	Fault 2 Code		
247	Fault 3 Code		
249	Fault 4 Code		
251	Fault 5 Code		
253	Fault 6 Code		
255	Fault 7 Code		
257	Fault 8 Code		
244	Fault 1 Time	Time stamp of the fault occurrence.	
246	Fault 2 Time		
248	Fault 3 Time		
250	Fault 4 Time		
252	Fault 5 Time		
254	Fault 6 Time		
256	Fault 7 Time		
258	Fault 8 Time		
262-269	Alarm Code 1-8	A code that represents a drive alarm. No time stamp available.	

Component Test Procedures

For information on	See page
Performing Visual Inspections	<u>2-1</u>
Conducting Forward and Reverse Biased Diode Tests for Major Power Components	<u>2-2</u>
Conducting Gate Driver Board Gate Interface Resistance Measurements	<u>2-6</u>
Checking the Rectifying Modules (on AC Input Drives Only)	<u>2-8</u>
Checking the Main Fan Inverters and Fans	<u>2-10</u>

Important: Review all precautions beginning on <u>page -3</u> prior to beginning any of the component test procedures contained in this chapter.

Performing Visual Inspections Visually inspect the cooling tunnels and heatsinks and components on the NFE Converter and Inverter structures before energizing the drive.

Inspecting the Cooling Tunnels and Heatsinks

- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- 2. Remove the main cooling fans from the bottom of the NFE converter (if present) and inverter structures. Refer to <u>Removing the Main Cooling</u> <u>Fans from the NFE Converters on page 3-21</u> and <u>Removing the Main</u> <u>Cooling Fans from the Inverters on page 3-51</u>, respectively.
- **3.** Inspect the cooling tunnels and heatsinks. Clean the heatsinks and tunnels if necessary.

Inspecting the Rectifying and Power Structures

- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- 2. Remove the protective covers from the NFE Converters (if present) and Inverters. Refer to <u>Removing the Protective Covers from the NFE</u> <u>Converters on page 3-18</u> and <u>Removing the Protective Covers from the</u> <u>Inverters on page 3-42</u>, respectively.
- **3.** Check all components for burn marks, breakage or foil delamination on circuit boards. Check all the boards on the NFE Converters (if present) and Inverters, including those on the Rectifying modules (if present) and Output Power modules.

Replace any of these components without further testing if they show evidence of burn marks, breakage or foil delamination.

Conducting Forward and Reverse Biased Diode Tests for Major Power Components

A forward biased diode test checks the semiconductor junctions between the terminals and measures the voltage drop across those junctions. A reverse biased diode test should find an open circuit, and the meter should display a value close to zero (Ex. ".0L" = zero load).

- **Important:** The actual voltage readings may vary depending upon your equipment. If your readings are not near the indicated values in the tables below, verify that the actual voltage measured is consistent for the Rectifying modules and Output Power modules.
- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- 2. Remove the protective screens from the Rectifying structure enclosure (if present). Refer to <u>Removing the Protective Screens from the</u> <u>Rectifying Structure Enclosure on page 3-19</u>.
- **3.** Remove the protective screens from the Power structure enclosure (if present). Refer to <u>Removing the Protective Screens from the Power</u> <u>Structure Enclosure on page 3-48</u>.
- 4. Disconnect the motor leads from the output power terminals. Refer to Figure 2.2 on page 2-4 for terminal location.
- **5.** Conduct forward and reverse biased diode tests on the Rectifying Modules (if present) and the Output Power Modules.

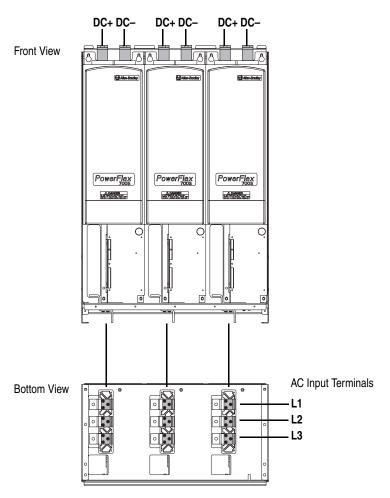


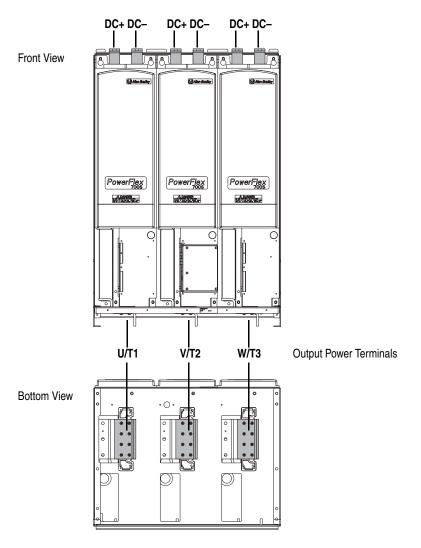
Figure 2.1 Measurement Points on the Rectifying Units for Forward and Reverse Biased Diode Tests on the Rectifying Modules

Note: One Rectifying Unit shown for clarity only.

Table 2.A	Forward Biased Dio	le Tests on Rectif	ying Modules
-----------	--------------------	--------------------	--------------

Meter	Leads	
-	+	Nominal meter reading
DC+	L1	
DC+	L2	Meter should beep once and value should gradually rise to about 1.0V ⁽¹⁾
DC+	L3	
L1	DC-	
L2	DC-	The value should gradually rise to about 0.35V ⁽²⁾
L3	DC-	
(1) The set	- I It	

(1) The actual voltage reading may vary depending upon your equipment. If your readings are not near 1.0V, verify that the actual voltage measured is consistent for the Rectifying module and the Output Power modules.


⁽²⁾ The actual voltage reading may vary depending upon your equipment. If your readings are not near 0.35V, verify that the actual voltage measured is consistent for the Rectifying module and the Output Power modules.

Meter Leads		
+	-	Nominal meter reading
L1	DC-	
L2	DC-	
L3	DC-	Motor chould display " 0!" (zero lead)
DC+	L1	Meter should display ".0L" (zero load)
DC+	L2	
DC+	L3	

Table 2.B Reverse Biased Diode Tests on Rectifying Modules

Important: If any one of the Rectifying modules fails these measurements, replace all Rectifying modules in a unit.

Figure 2.2 Measurement Points on the Inverter Units for Forward and Reverse Biased Diode Tests on the Output Power Modules

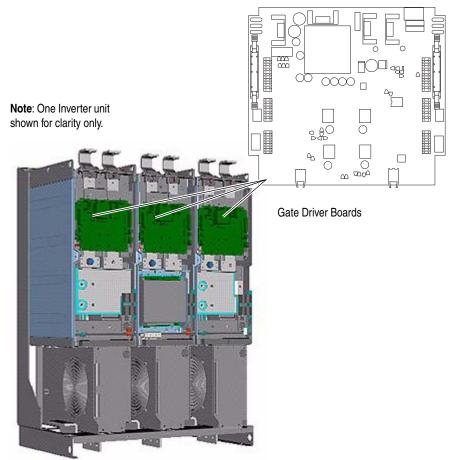
Note: One Inverter Unit shown for clarity only.

Meter Leads		
+	-	Nominal meter reading
DC-	U/T1	
DC-	V/T2	Meter should beep once and value should gradually rise to about 1.0V ⁽¹⁾
DC-	W/T3	
U/T1	DC+	
V/T2	DC+	The value should gradually rise to about 0.35V ⁽²⁾
W/T3	DC+	

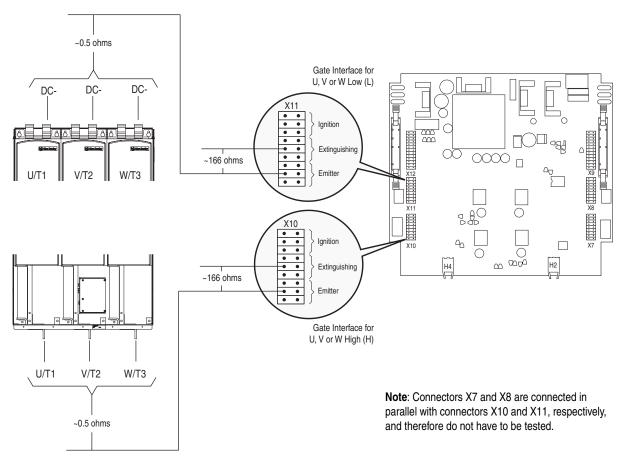
Table 2.C Forward Biased Diode Tests on Output Power Modules

(1) The actual voltage reading may vary depending upon your equipment. If your readings are not near 1.0V, verify that the actual voltage measured is consistent for the Rectifying module and the Output Power modules.

⁽²⁾ The actual voltage reading may vary depending upon your equipment. If your readings are not near 0.35V, verify that the actual voltage measured is consistent for the Rectifying module and the Output Power modules.


Meter Leads		
+	-	Nominal meter reading
U/T1	DC-	
V/T2	DC-	
W/T3	DC-	Mater should display " O!" (zero lead)
DC+	U/T1	Meter should display ".0L" (zero load)
DC+	V/T2	
DC+	W/T3	

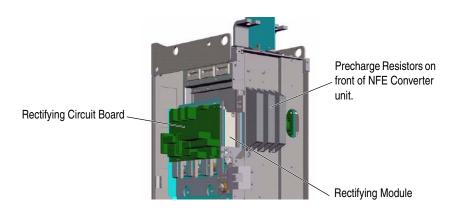
Important: If one of the Output Power modules fails any of these measurements, replace all three Output Power modules in a


unit.

Conducting Gate Driver Board Gate Interface Resistance Measurements

- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> Drive on page 3-4.
- 2. Remove the protective screens from the Rectifying structure enclosure (if present). Refer to <u>Removing the Protective Screens from the</u> <u>Rectifying Structure Enclosure on page 3-19</u>.
- **3.** Remove the protective covers from the Inverters. Refer to <u>Removing the</u> <u>Protective Covers from the Inverters on page 3-42</u>.
- **4.** There is one Gate Driver board per Output Power module. Locate the Gate Driver boards on the front of the Inverter units.

- **5.** Measure the gate interface resistance for each (U, V, and W phase) Output Power transistor:
- The resistance from each extinguishing pin to the branch emitter pin (connectors X10 and X11) should be approximately 166 Ω
- The resistance from the X10 branch emitter pin to the same branch output power terminal (U/T1, V/T2, and W/T3) should be approximately 0.5 Ω
- The resistance from the X11 branch emitter to the same branch DC– bus terminal should be approximately 0.5 Ω



Important: If any of the gate interfaces fails this test, replace the appropriate (left, middle, or right) Output Power module. Refer to Removing the Output Power Modules from the Inverters on page 3-68.

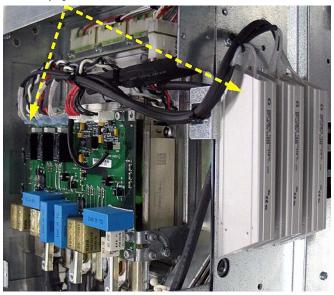
Checking the Rectifying Modules (on AC Input Drives Only)

Complete the following tests on all Rectifying modules and connected components.

- 1500 A drives contain three Rectifying modules
- 1770, 1900, 2150 and 2250 A drives contain four Rectifying modules
- 2700 A drives contain six Rectifying modules
- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- 2. Remove the protective screens from the Rectifying structure enclosure (if present). Refer to <u>Removing the Protective Screens from the</u> <u>Rectifying Structure Enclosure on page 3-19</u>.
- **3.** Remove the protective covers from the NFE Converters. Refer to Removing the Protective Covers from the NFE Converters on page 3-18.
- **4.** Each NFE Converter has three precharge resistors. Visually inspect the resistors.

5. If the precharge resistors are damaged:

A.Check the rectifiers and external connections for short-circuits.


B.Replace all Rectifying modules. Refer to <u>Removing the</u> <u>Rectifying Modules from the NFE Converters on page 3-34</u>.

C.Check the Output Power modules. Refer to <u>Conducting Forward</u> and <u>Reverse Biased Diode Tests for Major Power Components on</u> page 2-2.

Taking Resistance Measurements on the Precharge Resistors

- **6.** Disconnect the wires from connectors X13, X21 and X31, X22 and X32, and X23 and X33 on the Rectifying circuit board.
- Perform resistance measurements, using a digital multimeter, on the resistor wires that you have disconnected from connectors X21 and X31, X22 and X32 and X23 and X33 on the Rectifying circuit board.
- 8. Verify that the resistance of each resistor is approximately 47 Ω

Important: If any of the precharge resistors fails this test, replace the resistor.

Disconnect precharge resistor wires from Rectifying circuit board.

Taking Resistance Measurements on the Rectifying Circuit Board

9. Perform resistance measurements, using a digital multimeter, on the points listed in <u>Table 2.E</u> below.

Table 2.E Rectifying Circuit Board Resistance Measurements

Measurement Points on Board	Resistance
X31 to X9	
X32 to X9	0Ω
X33 to X9	

Important: If the Rectifying circuit board fails any of these tests, replace it. Refer to <u>Removing the Rectifying Circuit Board on page 3-32</u>.

Taking Resistance Measurements on the Rectifying Module

- **10.**Disconnect the wires from connectors X10, X11, X12 and X13 on the Rectifying Circuit board.
- **11.**Perform gate resistance measurements, using a digital multimeter, on the points listed in <u>Table 2.F</u> below. These points are on the back of the gate leads that you have disconnected from the board.

Table 2.F	Rectifying	Module Gate	Lead Resistance	Measurements
-----------	------------	-------------	-----------------	--------------

Measurement points on Gate Leads	Resistance
X10 gate lead: red to X10 gate lead: black	
X11 gate lead: red to X11 gate lead: black	18 Ω ±1 Ω
X12 gate lead: red to X12 gate lead: black	

Important: If the Rectifying module fails any of these tests, replace it. Refer to <u>Removing the Rectifying Modules from the NFE</u> <u>Converters on page 3-34</u>.

Checking the Main Fan Inverters and Fans

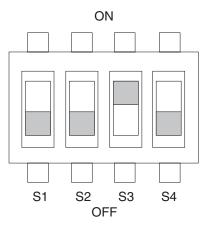
Checking the Fan Inverter LEDs

Each fan inverter has a red and a green diagnostic LED.

ATTENTION: The inverter LEDs are only operational when the drive is energized, and only visible with the covers removed from the power structure. Servicing energized equipment can be hazardous. Severe injury or death can result from electrical shock, burn or unintended actuation of controlled equipment. Follow Safety related practices of NFPA 70E, *ELECTRICAL SAFETY FOR EMPLOYEE WORKPLACES*. DO NOT work alone on energized equipment!

LED		
Red	Green	Indication
Steady	Steady	Inverter Idle
Off	Flashing	Inverter Running
Flashing	Steady	Inverter Faulted
		or
		No Control from ASIC board

Checking Fan Inverter Fuses

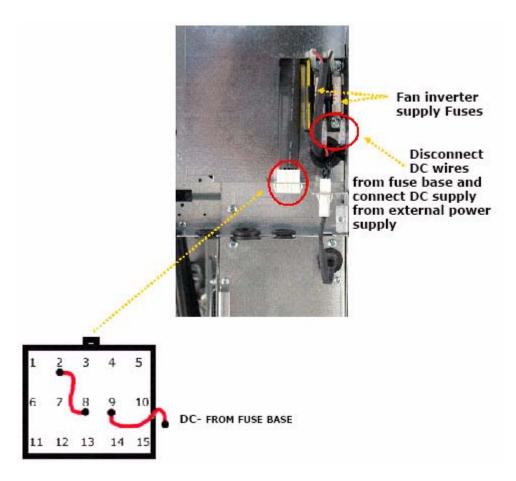

- 1. Remove the protective covers from the NFE Converters and Inverters. Refer to <u>Removing the Protective Covers from the NFE Converters on</u> <u>page 3-18</u> or <u>Removing the Protective Covers from the Inverters on</u> <u>page 3-42</u>.
- 2. Using a multi-meter, verify that the fuses are not open.

Fan Inverter DIP Switch Settings

- 1. The Fan Inverters must be removed from the drive in order to verify the DIP Switch settings. Refer to <u>Removing the Fan Inverters from the NFE</u> <u>Converters on page 3-25</u> and <u>Removing the Fan Inverters from the</u> <u>Inverters on page 3-52</u>.
- 2. Verify the following DIP switch settings on each Fan Inverter.

Switch	Setting	To indicate the following:
S1	Off	50 Hz fan motor frequency
S2	Off	220 V AC motor voltage
S3	On	230 V AC motor voltage
S4	Off	Frame size 9 - 13

Isolating a Faulty Fan Inverter on the NFE Unit


Important: This procedure requires special equipment and training. Only qualified and trained personnel should perform these procedures.

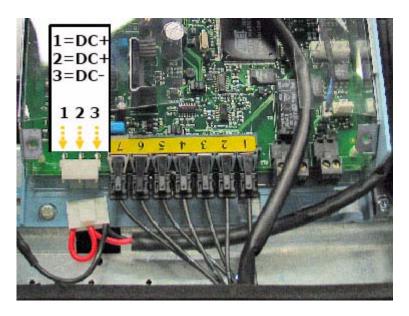
These tests require the recommended high voltage DC power supply.

Use the following procedure to isolate a faulty inverter if the main fans are not running. Each fan inverter should be tested individually. Refer to <u>Main</u> <u>Fan Circuit for Drives with AC Input on page B-6</u> or <u>Main Fan Connections</u> <u>for Drives with DC Input on page B-11</u> for more information.

- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- 2. Remove the 6 A fuses from the fan inverter fuse base.

3. Unplug the fan inverter wire harness from the X1 connector and connect one jumper between pin 2 and pin 8 on the X1 connector and a second jumper between pin 9 on the X1 connector and the DC- terminal on the fan inverter fuse base.

- **4.** Connect the power supply's DC+ to the DC+ terminal on the fuse base and the power supply's DC- to the DC- terminal on the fuse base.
- **5.** Set the external DC power supply voltage to a nominal value and the current limit to 1 A.
- **6.** Switch on the external DC power supply. If the fan fails to run, then the fan inverter is faulty and should be replaced.
- 7. Repeat steps 2...6 for the remaining fan inverters.


Isolating a Faulty Fan Inverter on the Inverter Unit

Important: This procedure requires special equipment and training. Only qualified and trained personnel should perform these procedures.

These tests require the recommended high voltage DC power supply.

Use the following procedure to isolate a faulty inverter if the main fans are not running. Each fan inverter should be tested individually. Refer to Main Fan Circuit for Drives with AC Input on page B-6 for more information.

- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- 2. Remove the 6 A fuses from the fan inverter fuse base.
- **3.** Disconnect the DC Bus supply from the X6 connector on the ASIC board.
- **4.** Connect the power supply's DC+ and DC- to the X6 connector on the ASIC board.

- 6A fuses DC+ DC-
- **5.** Connect the power supply's DC+ to the DC+ terminal on the fuse base and the power supply's DC- to the DC- terminal on the fuse base.

- **6.** Set the external DC power supply voltage to a nominal value and the current limit to 1 A.
- **7.** Switch on the external DC power supply. If you receive a fault, reset the fault. If the fan fails to run, then the fan inverter is faulty and should be replaced.
- 8. Repeat steps 2...7 for the remaining fan inverters.

Checking the Main Fan Motors

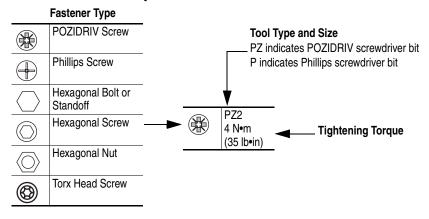
- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- 2. Remove the covers from the NFE Converter structure. Refer to Removing the Protective Covers from the NFE Converters on page 3-18.
- 3. Disconnect the fan motor from its inverter.
- **4.** Measure the resistance of the fan windings. If the resulting measurements are not similar to those in <u>Table 2.G</u> below, replace the fan. Refer to <u>Removing the Main Cooling Fans from the NFE</u> <u>Converters on page 3-21</u>.
- 5. Reconnect the fan motor to its inverter.
- **6.** Repeat steps 3...5 for the remaining fan motor(s) on the NFE Converter structure.
- 7. Remove the covers from the power structure. Refer to <u>Removing the</u> <u>Protective Covers from the Inverters on page 3-42</u>.
- 8. Disconnect the fan motor from its inverter.

9. Measure the resistance of the fan windings. If the resulting measurements are not similar to those in <u>Table 2.G</u> below, replace the fan. Refer to <u>Removing the Main Cooling Fans from the Inverters on page 3-51</u>.

 Table 2.G
 Correct Fan Measurements

Connection Wires	Resistance ± 5%	
Brown-Black	60 Ω	
Blue-Black	26 Ω	
Blue-Brown	34 Ω	
Resistance to ground	∞ (infinity)	

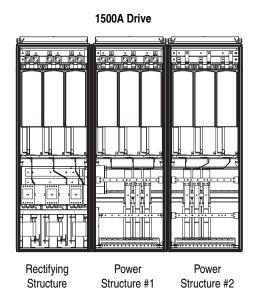
10.Reconnect the fan motor to its inverter.

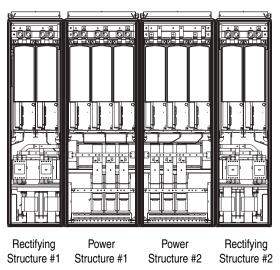

11.Repeat steps 8 ...10 for the remaining fan motor(s) on the power structure.

Access Procedures

For information on	See page
Understanding Torque Figures in Assembly Diagrams	<u>3-2</u>
Rectifying and Power Structure Locations in Frame 14 Drives	<u>3-3</u>
Removing Power from the Drive	<u>3-4</u>
Rectifying Structure Access Procedures	<u>3-5</u>
Removing the DPI / HIM Assembly	<u>3-5</u>
Moving the 700S Control Assembly Mounting Plate	<u>3-6</u>
Removing the 700S Phase II Control Cassette	<u>3-8</u>
Removing the Common Mode Filter Circuit Board	<u>3-10</u>
Removing the 700S Fiber Optic Interface Board	<u>3-11</u>
Removing the 700S Phase II Control Mounting Plate	<u>3-12</u>
Removing the 700H I/O Circuit Boards and Control Assembly	<u>3-13</u>
Removing the 700H Fiber Optic Adapter Circuit Board	<u>3-14</u>
Moving the Control Frame	<u>3-17</u>
Removing the Protective Covers from the NFE Converters	<u>3-18</u>
Removing the Protective Screens from the Rectifying Structure Enclosure	<u>3-19</u>
Removing the Air Flow Plate from the Rectifying Structure Enclosure	<u>3-20</u>
Removing the Main Cooling Fans from the NFE Converters	<u>3-21</u>
Removing the Precharge Resistors	3-23
Removing the Fan Inverter Fuse Assemblies from the NFE Converters	3-24
Removing the Fan Inverters from the NFE Converters	<u>3-25</u>
Removing the NFE Converter Unit from the Enclosure	<u>3-27</u>
Removing the NFE Converters from the Frame	<u>3-31</u>
Removing the Rectifying Circuit Board	<u>3-32</u>
Removing the Rectifying Modules from the NFE Converters	<u>3-34</u>
Removing the Bus Capacitors from the NFE Converters	<u>3-41</u>
Power Structure Access Procedures	<u>3-42</u>
Removing the Protective Covers from the Inverters	<u>3-42</u>
Removing the Gate Driver Circuit Boards	<u>3-43</u>
Removing the ASIC Circuit Boards	<u>3-44</u>
Removing the Protective Screens from the Power Structure Enclosure	<u>3-48</u>
Removing the Voltage Feedback Circuit Board	<u>3-49</u>
Removing the Main Cooling Fans from the Inverters	<u>3-51</u>
Removing the Fan Inverters from the Inverters	<u>3-52</u>
Removing the Air Flow Plate from the Power Structure Enclosure	<u>3-56</u>
Removing the Inverter Unit from the Enclosure	<u>3-57</u>
Removing the Fan Inverter Fuse Assemblies from the Inverters	<u>3-61</u>
Removing the DC Connective Bus Bars from the Inverters	3-63
Removing the Inverters from the Frame	3-65
Removing the Output Power Modules from the Inverters	3-68
Removing the DC Bus Capacitors from the Inverters	<u>3-74</u>

Understanding Torque Figures in Assembly Diagrams


Icons and numbers in the assembly diagrams indicate how to tighten hardware after re-assembly:


POZIDRIV[®] is a registered trademark of the Phillips Screw Company Phillips[®] is a registered trademark of Phillips Screw Company

Rectifying and Power Structure Locations in Frame 14 Drives

The Rectifying structures contain the Non-Regenerative Front End (NFE) Converters, which contain the Rectifying modules. The Power structures contain the Inverters, which contain the Output Power modules. The access procedures below are split into two main sections; one for the components contained in the Rectifying structures and one for the components contained in the Power structures. See: <u>Rectifying Structure Access Procedures on</u> <u>page 3-5</u> or <u>Power Structure Access Procedures on page 3-42</u>.

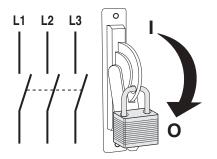
1770A, 1900A, 2150A & 2250A Drives

Rectifying Structure #1 Rectifying Structure #1 Rectifying Structure #2 Structure #2

Note: Shown with doors and control frames removed for clarity only.

2700A Drive

Removing Power from the Drive


ATTENTION: To avoid an electric shock hazard, verify that the voltage on the bus capacitors has discharged completely before servicing. Check the DC bus voltage at the Power Terminal Block by measuring between the +DC and –DC terminals, between the +DC terminal and the chassis, and between the –DC terminal and the chassis. The voltage must be zero for all three measurements.

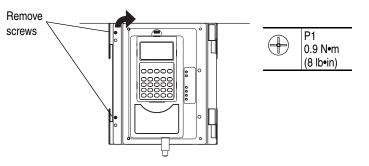
Remove power before making or breaking cable connections. When you remove or insert a cable connector with power applied, an electrical arc may occur. An electrical arc can cause personal injury or property damage by:

- sending an erroneous signal to your system's field devices, causing unintended machine motion
- causing an explosion in a hazardous environment

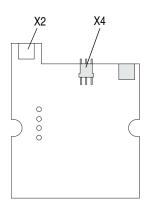
Electrical arcing causes excessive wear to contacts on both the module and its mating connector. Worn contacts may create electrical resistance.

- 1. Turn off and lock out input power. Wait five minutes.
- 2. Verify that there is no voltage at the drive's input power terminals.
- **3.** Check the DC bus voltage at the Power Terminal Block by measuring between the +DC and –DC terminals, between the +DC terminal and the chassis, and between the –DC terminal and the chassis. The voltage must be zero for all three measurements.

Rectifying Structure Access Procedures

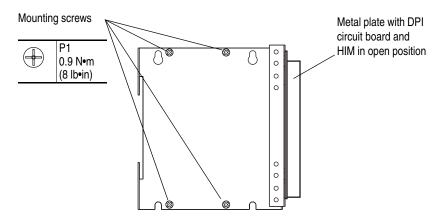

Below are the instructions for removing and installing components, including the rectifying modules, in or on the NFE Converters of the drive. For instructions on removing and installing components, including the output power modules, on the Inverters refer to <u>Power Structure Access</u>. <u>Procedures on page 3-42</u>.

Removing the DPI / HIM Assembly


1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.

Important: Before removing connections and wires, mark the connections and wires to avoid incorrect wiring during assembly.

2. Remove the two screws from the front of the DPI / HIM assembly.



- **3.** Open the metal plate that holds the DPI interface and HIM.
- **4.** Unplug the DPI cable from the X2 connector on the DPI Interface circuit board.

Back view of the DPI circuit board which should remain mounted on the back of the metal plate.

- **5.** On 700S drives only, unplug the cable from the X4 connector on the circuit board.
- **6.** Remove the four mounting screws and the assembly from the control frame.

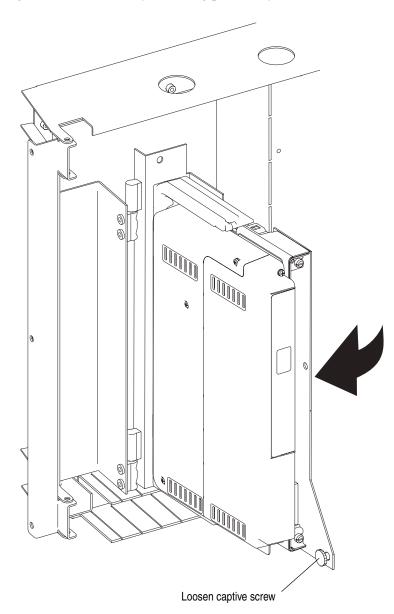
Installing the DPI / HIM Assembly

Install the DPI / HIM assembly in the reverse order of removal.

Moving the 700S Control Assembly Mounting Plate

1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.

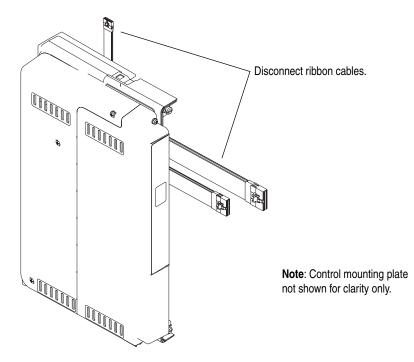
Important: Before removing connections and wires, mark the connections and wires to avoid incorrect wiring during assembly.


2. Disconnect any fiber optic ControlNet and SynchLink cables from the 700S control cassette.

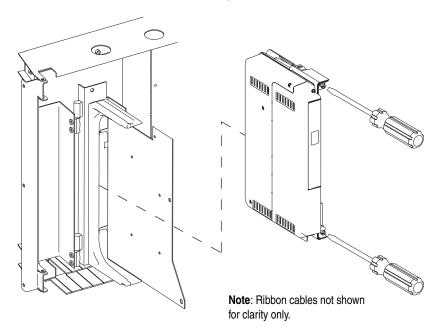
ATTENTION: Hazard of permanent eye damage exists when using optical transmission equipment. This product emits intense light and invisible radiation. Do not look into fiber-optic ports or fiber-optic cable connectors.

Important: Minimum inside bend radius for SynchLink and ControlNet fiber-optic cable is 25.4 mm (1 in). Any bends with a shorter inside radius can permanently damage the fiber-optic cable. Signal attenuation increases with decreased inside bend radii.

- **3.** Disconnect the I/O and communications cables from the control cassette and set them aside.
- **4.** Loosen the captive screw on the control assembly mounting plate and swing the control assembly mounting plate away from the drive.



Replacing the 700S Control Assembly Mounting Plate

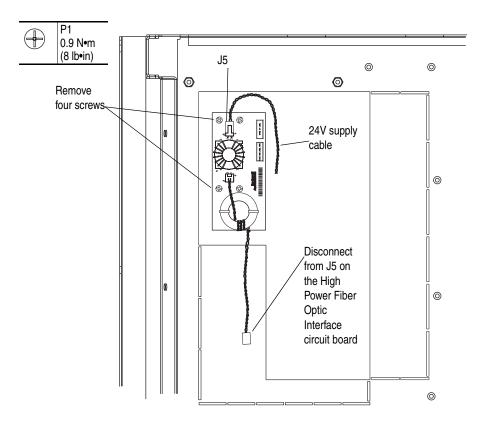

Replace the 700S control assembly mounting plate in the reverse order of moving.

Removing the 700S Phase II Control Cassette

- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- 2. Move the 700S control assembly mounting plate. Refer to Moving the 700S Control Assembly Mounting Plate on page 3-6
- **3.** Carefully unplug the ribbon cables from the sockets on the Fiber Optic Star Interface circuit board on the back of the control mounting plate, and carefully set them aside.

4. Loosen the two mounting screws on the front of the control cassette and slide the cassette off of the mounting bracket.

Installing the 700S Phase II Control Cassette


Install the control cassette in the reverse order of removal.

Removing the Common Mode Filter Circuit Board

- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- 2. Move the 700S control assembly mounting plate. Refer to <u>Moving the</u> 700S Control Assembly Mounting Plate on page 3-6.

Important: Before removing connections and wires, mark the connections and wires to avoid incorrect wiring during assembly.

- **3.** Disconnect the 24V power supply cable from connector J5 on the Common Mode Filter circuit board.
- **4.** Disconnect the twisted pair wires from connector J5 on the Fiber Optic Star Interface circuit board.

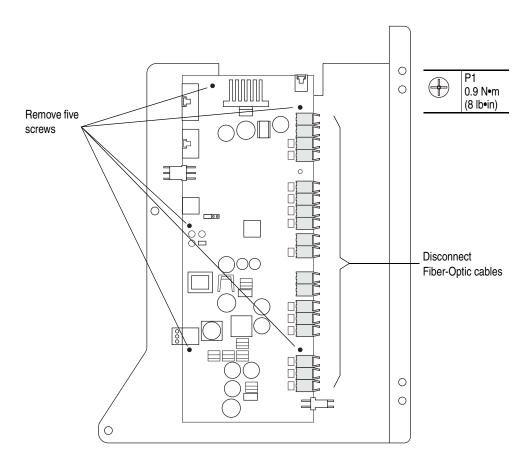
5. Remove the four screws that secure the Common Mode Filter board to the four standoffs on the control frame and remove the Common Mode Filter board.

Installing the Common Mode Filter Circuit Board

Install the Common Mode Filter Circuit Board in the reverse order of removal.

Removing the 700S Fiber Optic Interface Board

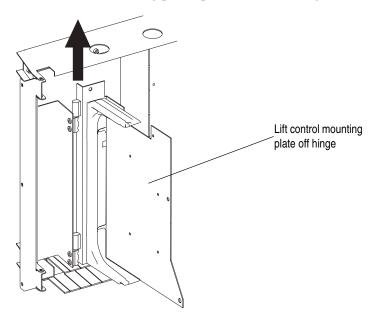
- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- 2. Move the 700S control assembly mounting plate. Refer to Moving the 700S Control Assembly Mounting Plate on page 3-6.


Important: Before removing connections and wires, mark the connections and wires to avoid incorrect wiring during assembly.

3. Carefully unplug the fiber-optic cables from the sockets along the right side of the Fiber Optic Interface circuit board (on the backside of the control assembly mounting plate), and carefully set them aside.

ATTENTION: Hazard of permanent eye damage exists when using optical transmission equipment. This product emits intense light and invisible radiation. Do not look into fiber-optic ports or fiber-optic cable connectors.

Important: Minimum inside bend radius for fiber-optic cable is 25.4 mm (1 in). Any bends with a shorter inside radius can permanently damage the fiber-optic cable. Signal attenuation increases with decreased inside bend radii.

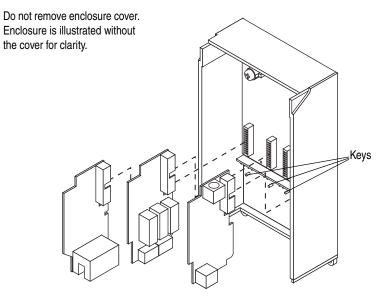

- **4.** Carefully unplug the three ribbon cables from the sockets on the Fiber Optic Interface board, and carefully set them aside.
- **5.** Disconnect the 24V Power Supply cable from connector J5 on the Fiber Optic Interface board.
- **6.** Remove the five screws which secure the Fiber Optic Interface board to the mounting plate and remove the board from the mounting plate.

Installing the 700S Fiber Optic Interface Circuit Board

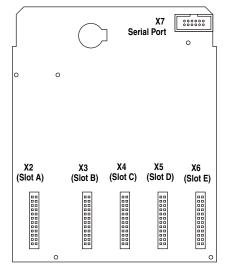
Install the Fiber Optic Interface circuit board in reverse order of removal.

Removing the 700S Phase II Control Mounting Plate

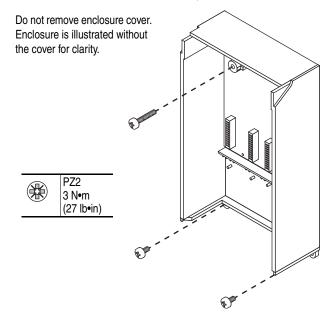
- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> Drive on page 3-4.
- 2. Move the 700S control assembly mounting plate. Refer to <u>Moving the</u> 700S Control Assembly Mounting Plate on page 3-6.
- **3.** Remove the 700S control cassette. Refer to <u>Removing the 700S Phase II</u> <u>Control Cassette on page 3-8</u>.
- 4. Remove the 700S Fiber Optic Interface circuit board. Refer to <u>Removing</u> the 700S Fiber Optic Interface Board on page 3-11.
- 5. Lift the control mounting plate up and off of the hinge.



Installing the 700S Phase II Control Mounting Plate

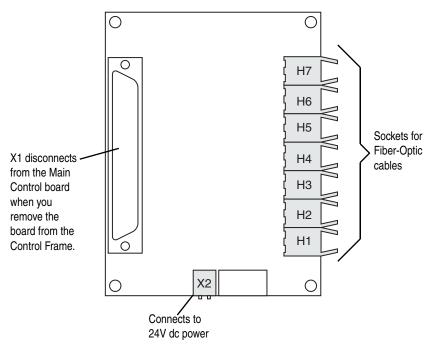

Install the control mounting plate in reverse order of removal.

Removing the 700H I/O Circuit Boards and Control Assembly


- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- **2.** Open the enclosure that contains the Control and I/O circuit boards and carefully unplug the DPI cable and any I/O cables.
- **3.** Remove the I/O boards from the Control board and enclosure. Note the order of the boards and the keys which prevent placement of boards in incorrect slots.

4. Unplug the serial connection from X7 of the Control board.

5. Remove the three screws which secure the Control assembly to the drive and remove the Control assembly.


Installing the 700H I/O Circuit Boards and Control Assembly

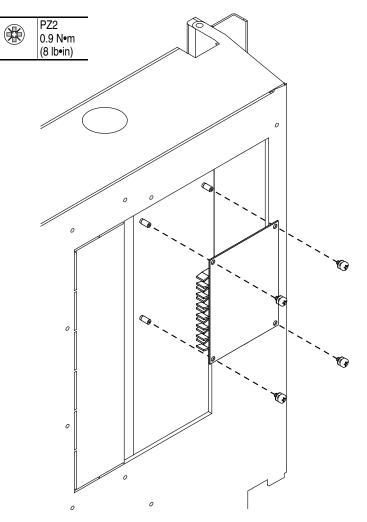
Install the 700H Control and I/O circuit boards in reverse order of removal.

Removing the 700H Fiber Optic Adapter Circuit Board

The Fiber Optic Adapter board is mounted on the back of the control assembly.

- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- Remove the 700H I/O circuit boards and Control assembly. Refer to <u>Removing the 700H I/O Circuit Boards and Control Assembly on</u> <u>page 3-13</u>.
- **3.** Move the Control frame to expose its back. Refer to <u>Moving the Control</u> <u>Frame on page 3-17</u>.

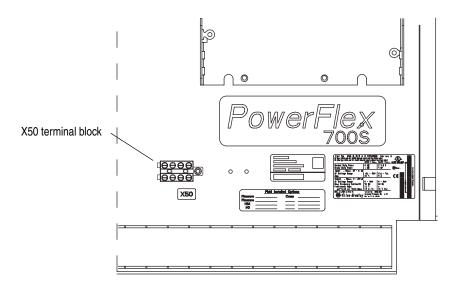
4. Disconnect the control power cable from X2 of the Fiber Optic Adapter board.


5. Carefully disconnect the fiber-optic cables from the right side of the circuit board, and carefully set them aside.

ATTENTION: Hazard of permanent eye damage exists when using optical transmission equipment. This product emits intense light and invisible radiation. Do not look into fiber-optic ports or fiber-optic cable connectors.

Important: Minimum inside bend radius for fiber-optic cable is 25.4 mm (1 in). Any bends with a shorter inside radius can permanently damage the fiber-optic cable. Signal attenuation increases with decreased inside bend radii.

6. Remove the four screws which secure the Fiber Optic Adapter board to the stand-offs on the back of the Control frame and remove the Fiber Optic Adapter board.



Installing the 700H Fiber Optic Adapter Circuit Board

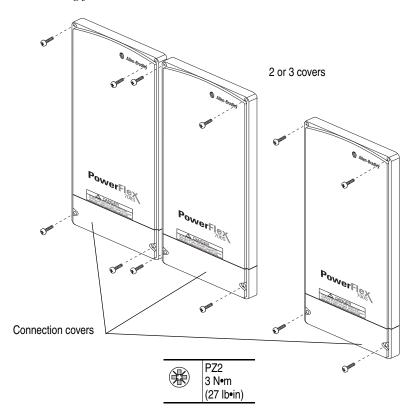

Install the 700H Fiber Optic Adapter circuit board in reverse order of removal.

Moving the Control Frame

- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- **2.** If moving the control frame from a DC input drive with precharge interlock, disconnect the wiring from terminal strip X50.

- **3.** Loosen the T8 Torx-head screws, which secure the control frame to the drive enclosure.
- 4. Swing the control frame out and away from the Rectifying structure.

Replacing the Control Frame

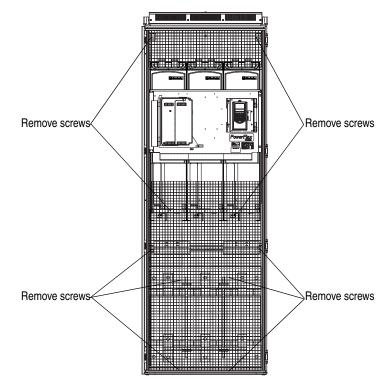

Replace the control frame in reverse order of removal.

Removing the Protective Covers from the NFE Converters

You must remove the protective covers to gain access to the NFE Converters.

- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- 2. Move the control frame. Refer to Moving the Control Frame on page 3-17.
- **3.** Remove the four M5 Pozi-drive screws which secure each of the two or three top and connection protective covers to the drive, then remove the covers.

Note: You only need to remove the connection covers to gain access to the cooling fan connetors.

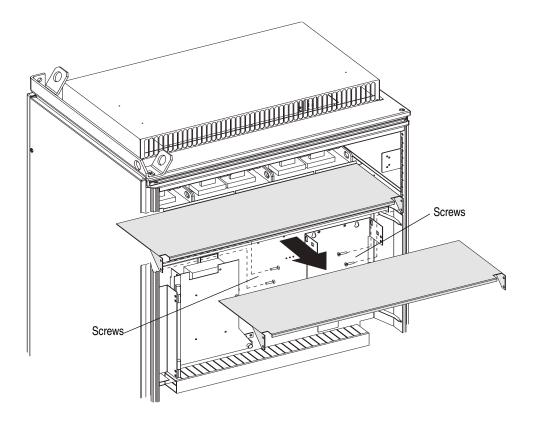

Installing the Protective Covers on the NFE Converters

Install the protective covers on the NFE Converters in reverse order of removal.

Removing the Protective Screens from the Rectifying Structure Enclosure

This procedure is only necessary for drives installed in NEMA/UL Type 1 / IP21 enclosures.

- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- 2. Move the control frame. Refer to Moving the Control Frame on page 3-17.
- **3.** Remove the protective covers. Refer to <u>Removing the Protective Covers</u> from the NFE Converters on page 3-18.
- **4.** Remove the screws that secure the protective screens to the enclosure and remove the screens.

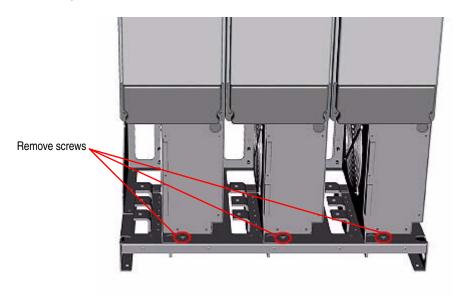

Installing the Protective Screens on the Rectifying Structure Enclosure

Install the protective screens in reverse order of removal.

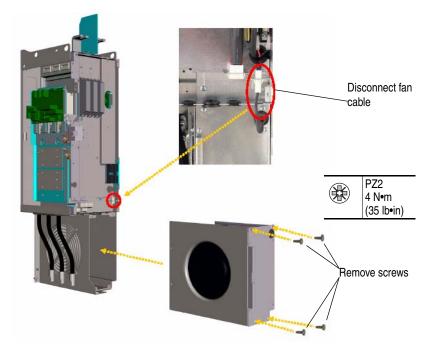
Removing the Air Flow Plate from the Rectifying Structure Enclosure

You must remove the Air Flow Plate in order to remove the NFE Converters from the drive.

- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- 2. Move the control frame. Refer to Moving the Control Frame on page 3-17.
- **3.** Remove the protective covers. Refer to <u>Removing the Protective Covers</u> from the NFE Converters on page 3-18.
- 4. If present, remove the protective screens. Refer to <u>Removing the</u> <u>Protective Screens from the Rectifying Structure Enclosure on</u> <u>page 3-19</u>.
- **5.** Remove the four T8 Torx-head screws which secure the Air Flow Plate to the drive frame.
- 6. Slide the Air Flow Plate off of the drive frame.


Installing the Airflow Plate on the Rectifying Structure

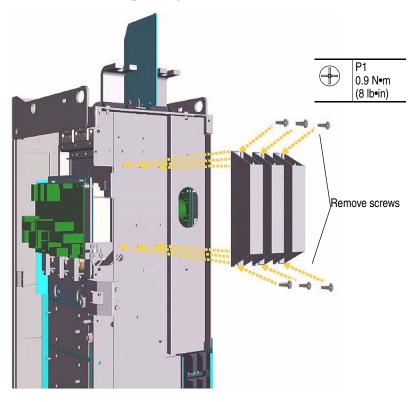
Install the Air Flow Plate in reverse order of removal.


Removing the Main Cooling Fans from the NFE Converters

There is a Main Cooling Fan on each of the NFE Converters.

- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> Drive on page 3-4.
- 2. Move the control frame. Refer to Moving the Control Frame on page 3-17.
- **3.** Remove the protective covers. Refer to <u>Removing the Protective Covers</u> from the NFE Converters on page 3-18.
- 4. If present, remove the protective screens. Refer to <u>Removing the</u> <u>Protective Screens from the Rectifying Structure Enclosure on</u> <u>page 3-19</u>.
- **5.** Remove the screw, located directly in front of the Main Cooling Fan housing, that secures the NFE Converter module to the drive frame.

- **6.** Disconnect the Main Cooling Fan cable connector on the NFE Converters (see illustration below for location).
- **7.** Remove the four screws that secure the fan housing to the frame. Then remove the fan from the frame.


8. Repeat steps 5...7 for each remaining fan.

Installing the Main Cooling Fans on the NFE Converters

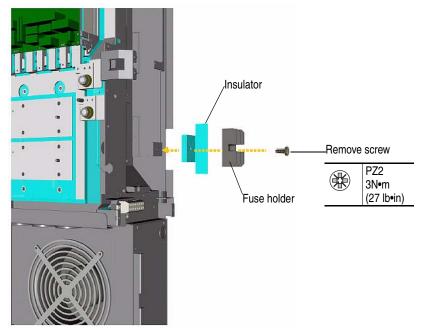
Install the Main Cooling Fans in reverse order of removal.

Removing the Precharge Resistors

- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- 2. Move the control frame. Refer to Moving the Control Frame on page 3-17.
- **3.** Remove the protective covers. Refer to <u>Removing the Protective Covers</u> from the NFE Converters on page 3-18.
- 4. If present, remove the protective screens. Refer to <u>Removing the</u> <u>Protective Screens from the Rectifying Structure Enclosure on</u> <u>page 3-19</u>.
- **Important:** Before removing connections and wires, mark the connections and wires to avoid incorrect wiring during assembly.
- **5.** Disconnect the precharge resistor wires from connectors X31, X32 and X33 on the Rectifying circuit board.
- **6.** Remove the 4x8 screws that secure the precharge resistors to the drive frame, and remove the precharge resistors.

Installing the Precharge Resistors

Install the precharge resistors in reverse order of removal.


Removing the Fan Inverter Fuse Assemblies from the NFE Converters

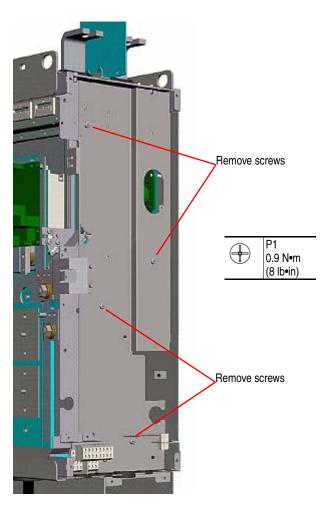
There is a Fan Inverter Fuse Assembly for each NFE Converter Fan.

- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- 2. Move the control frame. Refer to Moving the Control Frame on page 3-17.
- **3.** Remove the protective covers. Refer to <u>Removing the Protective Covers</u> from the NFE Converters on page 3-18.
- 4. If present, remove the protective screens. Refer to <u>Removing the</u> <u>Protective Screens from the Rectifying Structure Enclosure on</u> <u>page 3-19</u>.
- 5. Remove the Fan Inverter fuses from the fuse holder.

Important: Before removing connections and wires, mark the connections and wires to avoid incorrect wiring during assembly.

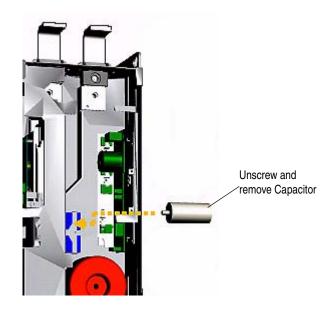
- **6.** Disconnect the DC+ and DC- wire connectors from both ends of the fuse assembly.
- **7.** Remove the M4 POZIDRIV screw that secures the fuse holder and insulator to the fuse base and remove the fuse holder and insulator.

8. Repeat steps 5...7 for each remaining Fan Inverter fuse assembly.

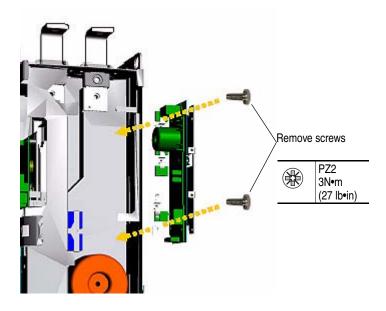

Installing the Fan Inverter Fuse Assemblies on the NFE Converters

Install the Fan Inverter fuse assemblies on the NFE Converters in reverse order of removal.

Removing the Fan Inverters from the NFE Converters


There is a Fan Inverter for each of the NFE Converters Fans.

- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- 2. Move the control frame. Refer to Moving the Control Frame on page 3-17.
- **3.** Remove the protective covers. Refer to <u>Removing the Protective Covers</u> from the NFE Converters on page 3-18.
- 4. If present, remove the protective screens. Refer to <u>Removing the</u> <u>Protective Screens from the Rectifying Structure Enclosure on</u> <u>page 3-19</u>.
- **5.** Remove the Fan Inverter fuse assemblies. Refer to <u>Removing the Fan</u> Inverter Fuse Assemblies from the NFE Converters on page 3-24.
- **6.** Remove the screws that the secure the fan inverter protection cover to the drive, and remove the cover.



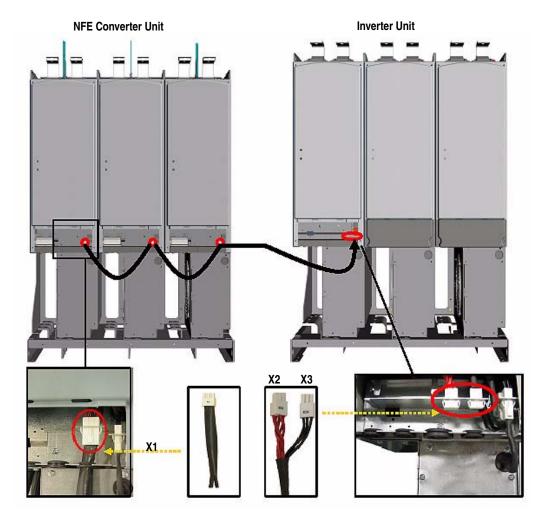
Important: Before removing connections and wires, mark the connections and wires to avoid incorrect wiring during assembly.

7. To replace the Fan Inverter capacitor, disconnect the capacitor wires from connectors X4 and X5 and unscrew (turning counter clockwise) the capacitor from the drive frame.

- **8.** Disconnect the wires from connectors X2 and X8 on the Fan Inverter circuit board.1
- **9.** Remove the M4x8 screws that secure the Fan Inverter circuit board to the drive frame.

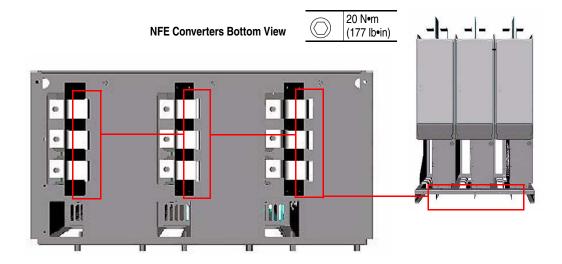
10.Repeat steps 6...9 for each of the remaining Fan Inverters.

Installing the Fan Inverters on the NFE Converters

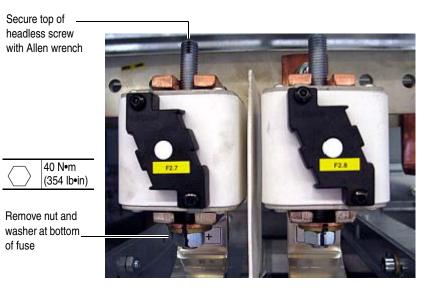

Install the Fan Inverters in reverse order of removal.

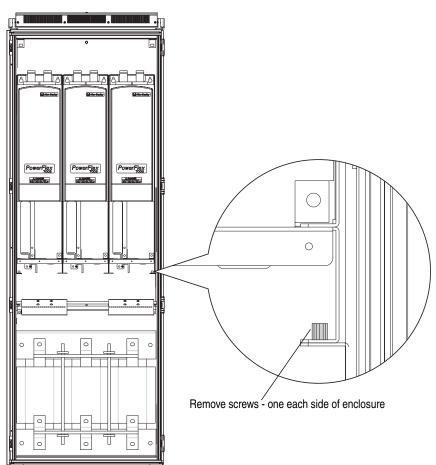
Removing the NFE Converter Unit from the Enclosure

Note: The NFE Converters are secured to a frame that is removed from the enclosure as a single unit. This unit must be removed from the enclosure before the individual NFE Converters and/or Rectifying modules can be removed.


- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- 2. Move the control frame. Refer to Moving the Control Frame on page 3-17.
- **3.** Remove the protective covers. Refer to <u>Removing the Protective Covers</u> from the NFE Converters on page 3-18.
- 4. If present, remove the protective screens. Refer to <u>Removing the</u> <u>Protective Screens from the Rectifying Structure Enclosure on</u> <u>page 3-19</u>.

Important: Before removing connections and wires, mark the connections and wires to avoid incorrect wiring during assembly.


5. Disconnect the Fan Inverter cables from connector X1 on the NFE Converters and the pre-charge cables and Fan Inverter cables from connectors X2 and X3, respectively, on the Inverters.


6. Remove the AC input wiring or bus bars from the terminals at the bottom of the NFE Converters.

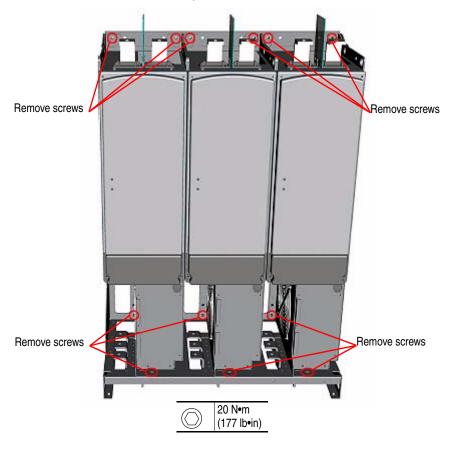
- Insulators
- 7. Remove the insulator material between the DC Bus Bar terminals at the top of the NFE Converters.

8. Remove the M10 nut and washer that secure the DC Link fuse to the DC Bus Bars at the top of the NFE Converters by securing the top of the M10 headless screw with an Allen wrench and removing the M10 nut and washer at the bottom of the fuse. Then remove the fuse.

9. Remove the two hexagonal screws that secure the NFE Converter unit to the enclosure frame.

10.Follow the instructions in publication PFLEX-IN014, *Installation Instructions - PowerFlex 700S /700H High Power Maintenance Stand*, to install the Maintenance Stand. Remove the NFE Converter unit by sliding it onto the rails of the Maintenance Stand.

Note: The Maintenance Stand is designed for removing NFE Converter and Inverter units from drives supplied in Rittal TS8 enclosures. Alternate means of removal will be necessary for other types of enclosures.


11.Follow the instructions in publication PFLEX-IN005..., *Installation Instructions - Lifting & Mounting PowerFlex 700S and 700H Drives* (*Frame 10 - 14*), supplied with the new power structures, to lift the power structures off of the Maintenance Stand.

Installing the NFE Converter Unit

Install the NFE Converter unit in reverse order of removal. Refer to the publication PFLEX-IN006.., *Installation Instructions - PowerFlex 700S and 700H AC Drives*, for tightening torques of AC Input, DC bus input and ground connection terminations.

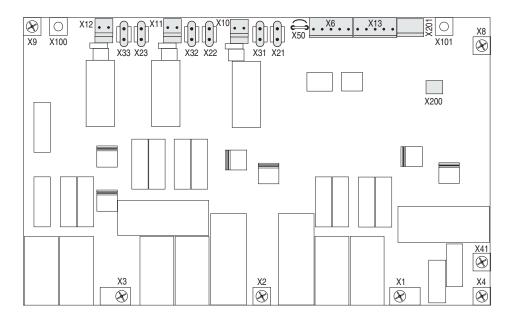
Removing the NFE Converters from the Frame

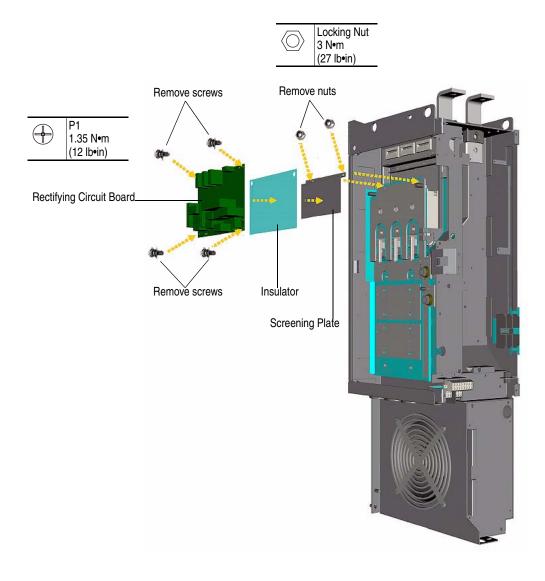
- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> Drive on page 3-4.
- 2. Move the control frame. Refer to Moving the Control Frame on page 3-17.
- **3.** Remove the protective covers. Refer to <u>Removing the Protective Covers</u> from the NFE Converters on page 3-18.
- 4. If present, remove the protective screens. Refer to <u>Removing the</u> <u>Protective Screens from the Rectifying Structure Enclosure on</u> <u>page 3-19</u>.
- 5. Remove the NFE Converter Unit. Refer to <u>Removing the NFE Converter</u> <u>Unit from the Enclosure on page 3-27</u>.
- **6.** Remove the screws that secure the NFE Converters to the frame. Two socket extensions are stored on the underside of the NFE Converter frame for use when removing the screws at the back of the enclosure.

7. Lift the NFE Converters off of the frame.

Installing the NFE Converters

Install the NFE Converters in reverse order of removal.


Removing the Rectifying Circuit Board


There is a Rectifying board for each NFE Converter in the drive.

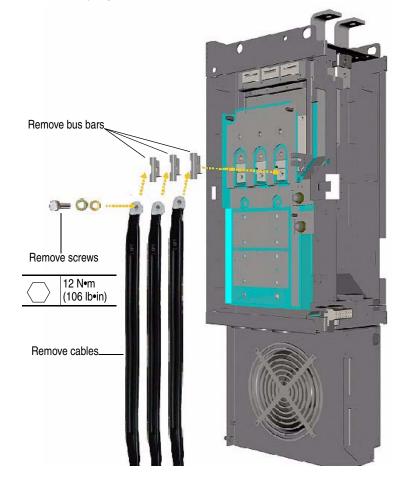
- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- 2. Move the control frame. Refer to Moving the Control Frame on page 3-17.
- **3.** Remove the protective covers. Refer to <u>Removing the Protective Covers</u> from the NFE Converters on page 3-18.
- 4. If present, remove the protective screens. Refer to <u>Removing the</u> <u>Protective Screens from the Rectifying Structure Enclosure on</u> <u>page 3-19</u>.
- 5. Remove the NFE Converter Unit. Refer to <u>Removing the NFE Converter</u> <u>Unit from the Enclosure on page 3-27</u>.
- 6. Remove the NFE Converters. Refer to <u>Removing the NFE Converters</u> from the Frame on page 3-31.

Important: Before removing connections and wires, mark the connections and wires to avoid incorrect wiring during assembly.

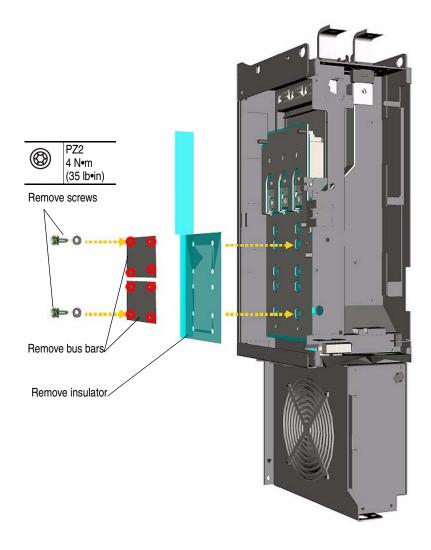
7. Unplug all cables and wires from the Rectifying circuit board and set them aside.

8. Remove the M4x8 screws that secure the Rectifying circuit board to the drive frame and remove the board and insulator.

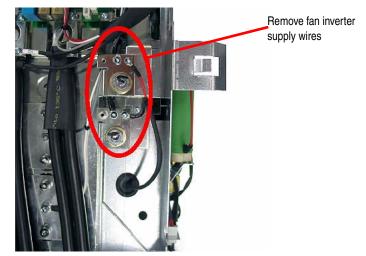
9. If necessary, unscrew the M4 nuts that secure the EMC protection plate to the drive frame and remove the plate.

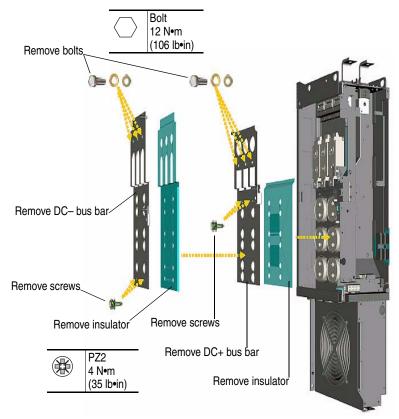

10.Repeat steps 7...9 for the remaining Rectifying circuit boards.

Installing the Rectifying Circuit Board

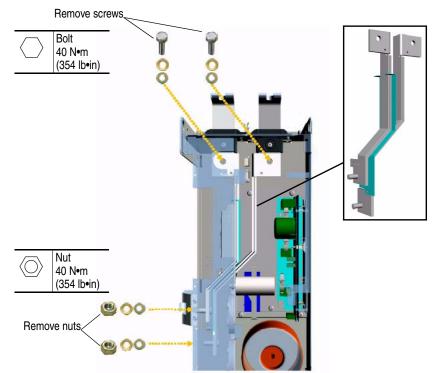

Install the Rectifying circuit board in reverse order of removal.

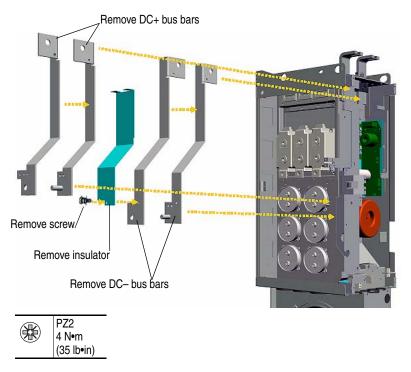
Removing the Rectifying Modules from the NFE Converters


- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- 2. Move the control frame. Refer to Moving the Control Frame on page 3-17.
- **3.** Remove the protective covers. Refer to <u>Removing the Protective Covers</u> from the NFE Converters on page 3-18.
- 4. If present, remove the protective screens. Refer to <u>Removing the</u> <u>Protective Screens from the Rectifying Structure Enclosure on</u> <u>page 3-19</u>.
- 5. Removing the NFE Converter Unit. Refer to <u>Removing the NFE</u> <u>Converter Unit from the Enclosure on page 3-27</u>.
- 6. Remove the NFE Converters. Refer to <u>Removing the NFE Converters</u> from the Frame on page 3-31.
- 7. Remove the Rectifying circuit board. Refer to <u>Removing the Rectifying</u> <u>Circuit Board on page 3-32</u>.
- **8.** Remove the M10x20 hexagonal screws that secure the input power cables and the Rectifier circuit board bus bars to the terminals at the top of the Rectifying modules and remove the cables and bus bars.

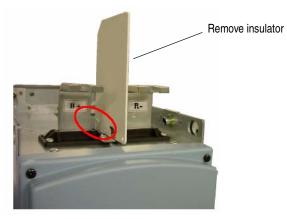


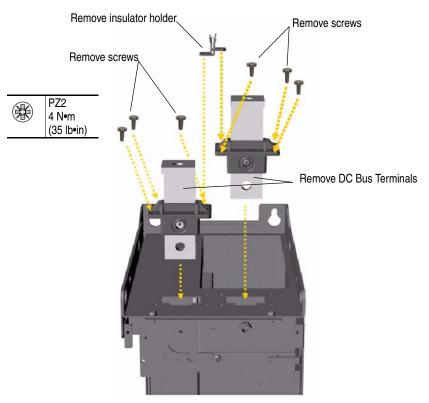
9. Remove the M6x25 torx head screws that secure the outer circuit Bus Bars and insulator to the drive frame and remove the bus bars and insulation.

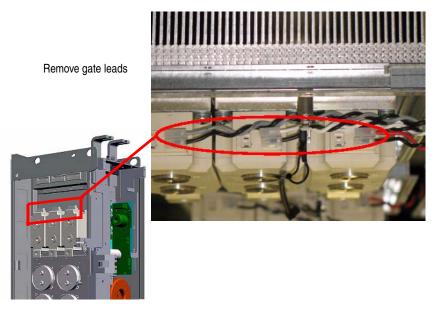

10.Remove the Fan Inverter supply wires from the Bus Bars at the front of the NFE Converters.

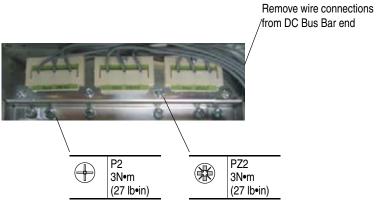


11.Remove the screws that secure the inner circuit Bus Bars and insulator to the drive and remove the bus bars and insulator.

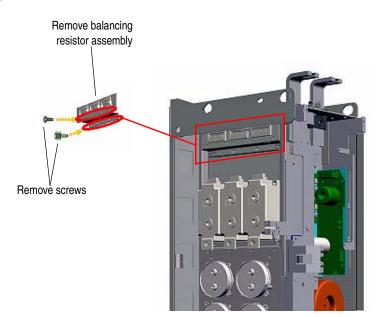

12.Remove screws and nuts that secure the DC Feed Bus Bars and Insulator to the drive.

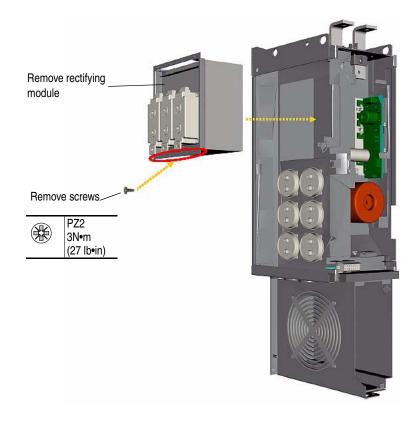

13.Remove the DC Feed Bus Bars and Insulator from the drive. If necessary, remove the screw that secures the insulator to the DC– Bus Bars and remove the insulator.


14.If necessary, remove the Insulator from the bracket between the DC Bus terminal assemblies.



15.If necessary, remove the screws that secure the DC Bus terminal assemblies and Insulator bracket to the drive and remove the DC Bus terminal assemblies and Insulator bracket.


16.Remove the gate leads from the top of the Rectifying module.

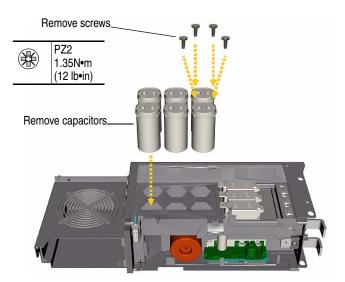


17.Remove the Balancing Resistor wires from the DC Bus Bars.

18.Remove the screws that secure the Balancing Resistor assembly to the Rectifying module and remove the Balancing Resistor assembly (see previous illustration for screw locations).

Balancing resistor assembly screws

19.Remove the screws that secure the Rectifying module to the drive and remove the Rectifying module.


20.Repeat steps 8...19 to remove the remaining Rectifying module(s).

Installing the Rectifying Modules on the NFE Converters

- Install the Rectifying modules in reverse order of removal.
- Run the <u>Performing the Power Circuit Diagnostic Test on a 7008</u> Drive on page 4-3 before running the drive.

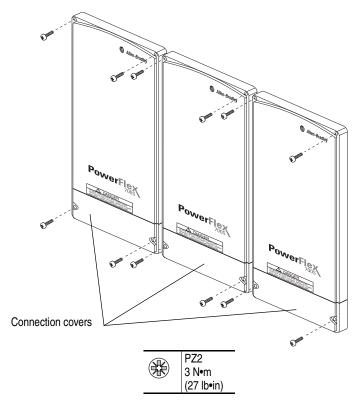
Removing the Bus Capacitors from the NFE Converters

- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> Drive on page 3-4.
- 2. Move the control frame. Refer to Moving the Control Frame on page 3-17.
- **3.** Remove the protective covers. Refer to <u>Removing the Protective Covers</u> from the NFE Converters on page 3-18.
- 4. If present, remove the protective screens. Refer to <u>Removing the</u> <u>Protective Screens from the Rectifying Structure Enclosure on</u> <u>page 3-19</u>.
- 5. Removing the NFE Converter Unit. Refer to <u>Removing the NFE</u> <u>Converter Unit from the Enclosure on page 3-27</u>.
- 6. Remove the NFE Converters. Refer to <u>Removing the NFE Converters</u> from the Frame on page 3-31.
- 7. Remove the Rectifying circuit board. Refer to <u>Removing the Rectifying</u> <u>Circuit Board on page 3-32</u>.
- **8.** Remove the Rectifying modules. Refer to <u>Removing the Rectifying</u> <u>Modules from the NFE Converters on page 3-34</u>.
- **9.** Remove the screws that secure the Capacitors to the drive frame and remove the capacitors.

Installing the Bus Capacitors on the NFE Converters

Install the bus capacitors in the reverse order of removal.

Power Structure Access Procedures


Below are the instructions for removing and installing components, including the output power modules, on the Inverters of the drive. For instructions on removing and installing components, including the rectifying modules, on the NFE Converters refer to <u>Rectifying Structure</u> <u>Access Procedures on page 3-5</u>.

Removing the Protective Covers from the Inverters

You must remove the protective covers to gain access to the Inverters.

- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- **2.** Remove the four M5 POZIDRIV screws which secure each of the three top and connection protective covers to the Inverters, then remove the covers.

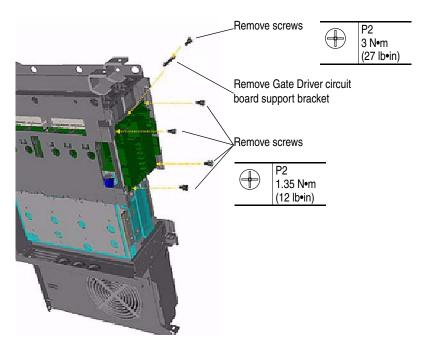
Note: You only need to remove the connection covers to gain access to the cooling fan connections.

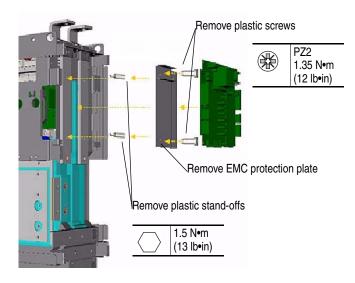
Installing the Protective Covers on the Inverters

Install the protective covers in reverse order of removal.

Removing the Gate Driver Circuit Boards

There is a Gate Driver board located on the front of each of the Inverters.


- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- 2. Remove the protective covers. Refer to <u>Removing the Protective Covers</u> from the Inverters on page 3-42.
- **3.** Unplug the DC +/– supply from X1 of the first Gate Driver board.
- **4.** Carefully unplug the fiber-optic cables from sockets along the top of the Gate Driver board, and carefully set them aside.


ATTENTION: Hazard of permanent eye damage exists when using optical transmission equipment. This product emits intense light and invisible radiation. Do not look into fiber-optic ports or fiber-optic cable connectors.

Important: Minimum inside bend radius for fiber-optic cable is 25.4 mm (1 in). Any bends with a shorter inside radius can permanently damage the fiber-optic cable. Signal attenuation increases with decreased inside bend radii.

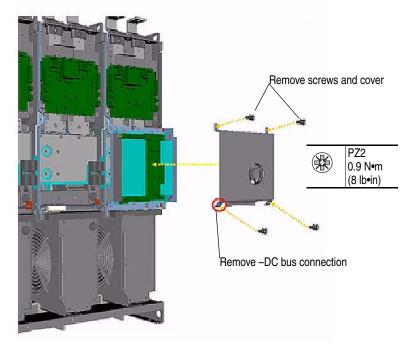
- **5.** Disconnect the other cables from sockets of the Gate Driver board, and set them aside.
- **6.** Remove the five screws that secure the Gate Driver board and support bracket to the Inverter.

- 7. Carefully remove the Gate Driver board and the board support bracket.
- **8.** Carefully remove the two plastic screws that secure the Gate Driver board screening plate to the Inverter and remove the screening plate.
- 9. Remove the two plastic stand-offs that support the Gate Driver board.

10.Repeat steps 3...9 for the remaining Gate Driver board(s).

Installing the Gate Driver Circuit Boards

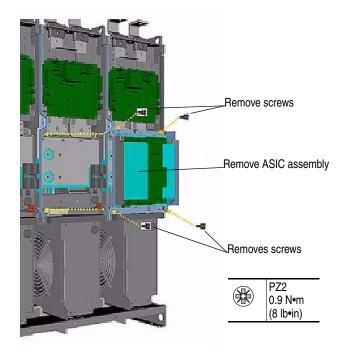
Install the Gate Driver circuit boards in the reverse order of removal.

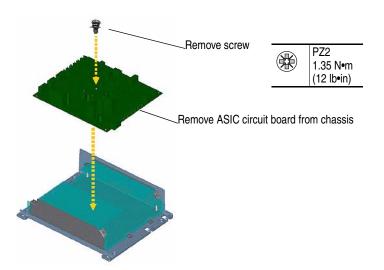

Removing the ASIC Circuit Boards

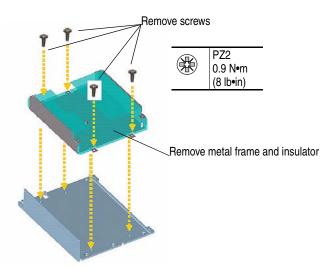
There is an ASIC board mounted on the middle Inverter of each Power structure.

ATTENTION: The sheet metal cover and mounting screws on the ASIC circuit board located on the power structure are energized at (–) DC bus potential high voltage. Risk of electrical shock, injury, or death exists if someone comes into contact with the assembly.

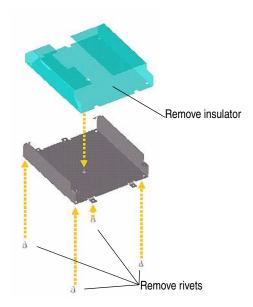
- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- 2. Remove the protective covers. Refer to <u>Removing the Protective Covers</u> from the Inverters on page 3-42.
- **3.** Remove the four screws that secure the ASIC cover to the ASIC assembly and remove the ASIC cover.
- 4. Remove the –DC bus connection from the ASIC cover.


- **5.** Unplug the fan, which mounts on the cover, from connector X1 of the ASIC circuit board.
- **6.** Carefully unplug the fiber-optic cables from sockets of the ASIC board, and carefully set them aside.


ATTENTION: Hazard of permanent eye damage exists when using optical transmission equipment. This product emits intense light and invisible radiation. Do not look into fiber-optic ports or fiber-optic cable connectors.

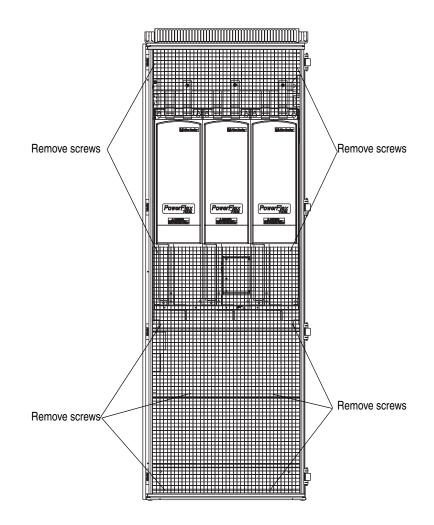

Important: Minimum inside bend radius for fiber-optic cable is 25.4 mm (1 in). Any bends with a shorter inside radius can permanently damage the fiber-optic cable. Signal attenuation increases with decreased inside bend radii.

- 7. For drives with dc input, unplug the external precharge circuitry from connectors X9 and X15 from the ASIC board.
- **8.** Disconnect the other cables from sockets on the front of the ASIC board, and set them aside.
- **9.** Remove the four screws that secure the ASIC assembly to the drive and remove the ASIC assembly.


10.Remove the screw that secures the ASIC board to the ASIC chassis and remove the ASIC board.

11.Remove the four screws that secure the plastic board holder to the metal frame and insulator and remove the metal frame and insulator.

12.Carefully remove the four rivets that secure the insulator to the metal frame and remove the insulator.


Installing the ASIC Circuit Boards

Install the ASIC circuit boards in reverse order of removal. Reconnect cables to ASIC board, while referring to Figure B.12 on page B-13).

Removing the Protective Screens from the Power Structure Enclosure

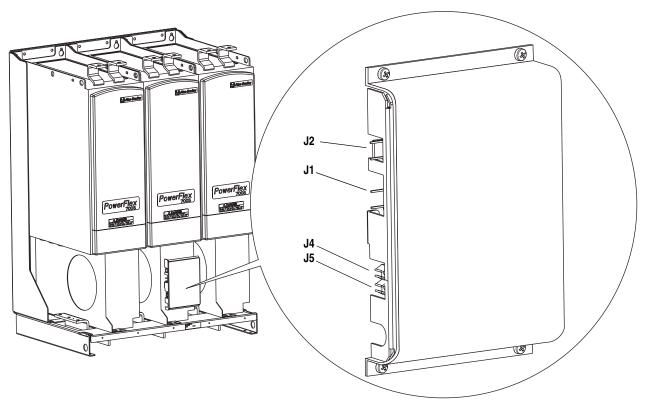
This procedure is only necessary for drives installed in NEMA/UL Type 1 / IP21 enclosures.

- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- **2.** Remove the screws that secure the protective screens to the enclosure and remove the screens.

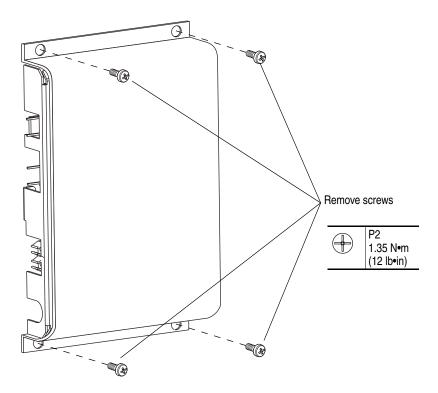
Installing the Protective Screens on the Power Structure Enclosure

Install the protective screens in reverse order of removal.

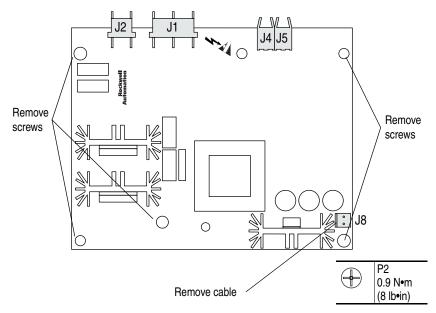
Removing the Voltage Feedback Circuit Board


The Voltage Feedback board is located near the bottom of the middle Inverter on Power Structure #1.

- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- 2. If present, remove the protective screens. Refer to <u>Removing the</u> <u>Protective Screens from the Power Structure Enclosure on page 3-48</u>.
- **3.** Disconnect the DC bus connection cable from the J2 socket and the motor feedback connection cable from the J1 socket at the top of the Voltage Feedback board.
- **4.** Carefully disconnect the fiber-optic cables from sockets J4 and J5 on the side of the Voltage Feedback circuit board and carefully set them aside (see illustration below for location).



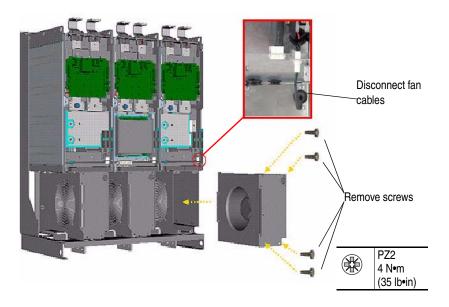
ATTENTION: Hazard of permanent eye damage exists when using optical transmission equipment. This product emits intense light and invisible radiation. Do not look into fiber-optic ports or fiber-optic cable connectors.


Important: Minimum inside bend radius for fiber-optic cable is 25.4 mm (1 in). Any bends with a shorter inside radius can permanently damage the fiber-optic cable. Signal attenuation increases with decreased inside bend radii.

5. Remove the four screws that secure the protective cover, insulator and Voltage Feedback Circuit board to the fan housing on the drive and carefully remove the protective cover, insulator and Voltage Feedback board.

6. Disconnect the cable from J8 socket of the Voltage Feedback board, and set it aside.

7. Remove the five screws that secure the insulator and Voltage Feedback board to the protective cover and remove the insulator and Voltage Feedback board.


Installing the Voltage Feedback Circuit Board

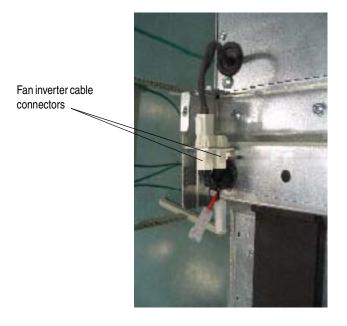
- Install the Voltage Feedback circuit board in reverse order of removal.
- Run the <u>Performing the Power Circuit Diagnostic Test on a 700S</u> <u>Drive on page 4-3</u> before running the drive.

Removing the Main Cooling Fans from the Inverters

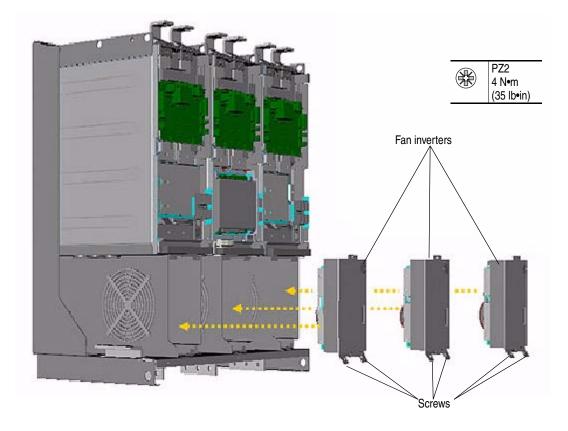
There is a Main Cooling Fan on each of the Inverters.

- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- 2. Remove the protective covers. Refer to <u>Removing the Protective Covers</u> from the Inverters on page 3-42.
- **3.** If present, remove the protective screens. Refer to <u>Removing the</u> <u>Protective Screens from the Power Structure Enclosure on page 3-48</u>.
- 4. Disconnect the Main Cooling Fan cable connectors on the Inverters.
- **5.** Remove the four screws that secure the fan to the Inverters. Then remove the fan from the inverter frame.

6. Repeat steps 4 and 5 or each remaining fan.

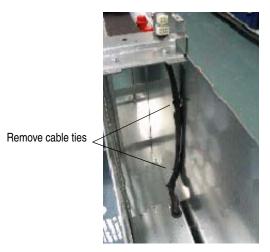

Installing the Main Cooling Fans on the Inverters

Install the Main Cooling Fans in reverse order of removal.


Removing the Fan Inverters from the Inverters

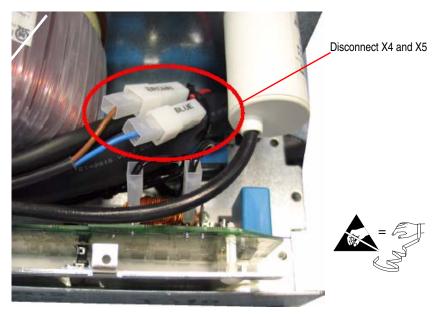
Each Fan Inverter is located behind a Main Cooling Fan on an Inverter.

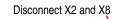
- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> Drive on page 3-4.
- 2. Remove the protective covers. Refer to <u>Removing the Protective Covers</u> from the Inverters on page 3-42.
- **3.** If present, remove the protective screens. Refer to <u>Removing the</u> <u>Protective Screens from the Power Structure Enclosure on page 3-48</u>.
- **4.** Remove the Voltage Feedback circuit board. Refer to <u>Removing the</u> <u>Voltage Feedback Circuit Board on page 3-49</u>.
- 5. Remove the Main Cooling Fans. Refer to <u>Removing the Main Cooling</u> Fans from the Inverters on page 3-51.
- **6.** Disconnect the Fan Inverter cables from the connections on the front of the Inverters.

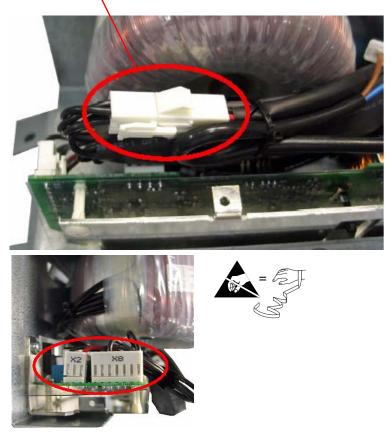


7. Push the Fan Inverter cables and connectors, largest first, through the rubber grommet into the frame, where the Main Cooling Fan was located.

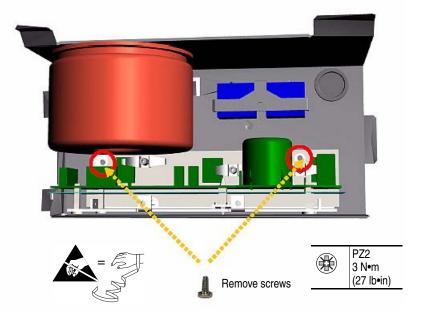
8. Remove the two M5 POZIDRIV screws that secure the Fan Inverter to the drive.


9. Remove the cable-ties that secure the cables with black insulation to the drive frame.


10.Remove the Fan Inverter assembly from the drive.


11.To remove the Fan Inverter circuit board from the old inverter assembly, unplug the cables from the following connectors:

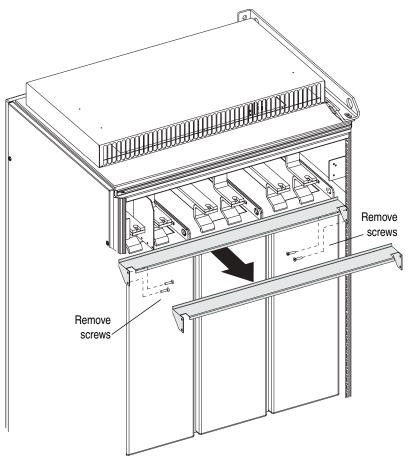
a. X4 and X5.



b. X8 and X2.

12.Remove the two M5 POZIDRIV screws that secure the Fan Inverter board and its heatsink to the assembly carriage. Then, carefully remove the Fan Inverter board and its heatsink from the assembly carriage.

13.Repeat steps 6...12 for the remaining Fan Inverter assemblies.


Installing the Fan Inverters

Install the Fan Inverters in reverse order of removal.

Removing the Air Flow Plate from the Power Structure Enclosure

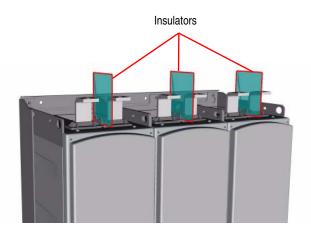
You must remove the Air Flow Plate in order to remove the Inverters from the drive.

- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- 2. If present, remove the protective screens. Refer to <u>Removing the</u> <u>Protective Screens from the Power Structure Enclosure on page 3-48</u>.
- **3.** Remove the four T8 Torx-head screws that secure the Air Flow Plate to the enclosure frame.
- 4. Slide the Air Flow Plate off of the enclosure frame.

Installing the Air Flow Plate on the Power Structure Enclosure

Install the Air Flow Plate in reverse order of removal.

Removing the Inverter Unit from the Enclosure

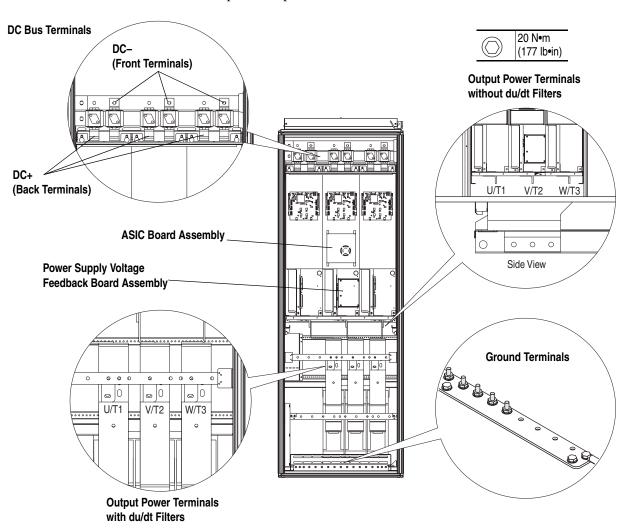

- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> Drive on page 3-4.
- 2. Remove the protective covers. Refer to <u>Removing the Protective Covers</u> from the Inverters on page 3-42.
- **3.** Remove the ASIC boards from the drive. Refer to <u>Removing the ASIC</u> <u>Circuit Boards on page 3-44</u>.

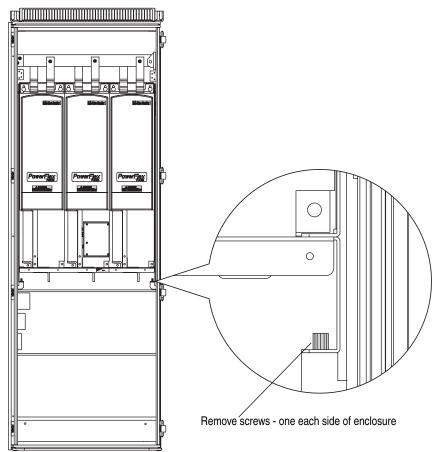
Note: It is not necessary to remove the ASIC board assembly from the Inverter. Only disconnect the fiber optic cables and other wires from the board that connect to boards in the Rectifying structure.

- 4. If present, remove the protective screens. Refer to <u>Removing the</u> <u>Protective Screens from the Power Structure Enclosure on page 3-48</u>.
- 5. If necessary, remove the Voltage Feedback board from the drive. Refer to Removing the Voltage Feedback Circuit Board on page 3-49.

Note: It is net necessary to remove the Voltage Feedback board assembly from the Inverter. Only disconnect the fiber optic cables and other wires from the board that connect to boards in the Rectifying structure.

- 6. Remove the Air Flow Plate. Refer to <u>Removing the Air Flow Plate from</u> the Power Structure Enclosure on page 3-56.
- 7. Remove the insulator material between the DC Bus Bar terminals at the top of the Inverters.




8. Remove the M10 nut and washer that secure the DC Link fuse to the DC Bus Bars at the top of the Inverters by securing the top of the M10 headless screw with an Allen wrench and removing the M10 nut and washer at the bottom of the fuse. Then remove the fuse.

Secure top of headless screw with Allen wrench 40 N•m (354 lb•in) Remove nut and washer at bottom of fuse

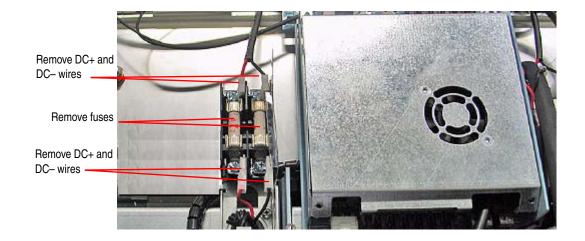
- **9.** Remove the motor connections from the output power terminals on both of the power structures. Note: The terminals are located in different positions, depending on whether du/dt filters are installed or not.
- **10.**Remove the ground connections from the bottom of the power structure enclosures.
- **11.**Remove the input connections from the incoming DC bus terminals at the top of both power structures.

12.Remove the two hexagonal screws that secure each power structure to the enclosure frames.

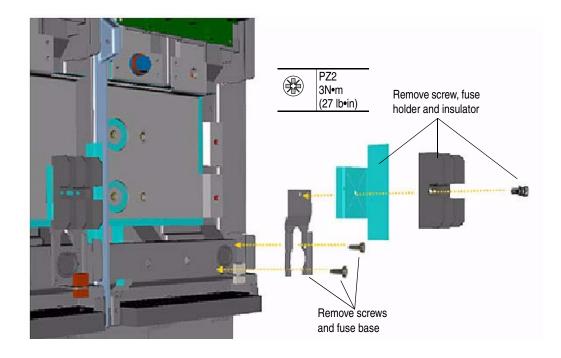
13.Follow the instructions in publication PFLEX-IN014..., *Installation Instructions - PowerFlex 700S / 700H High Power Maintenance Stand*, to install the Maintenance Stand (part number 20-MAINSTND). Remove each Inverter unit by sliding it onto the rails of the Maintenance Stand.

Note: The Maintenance Stand is designed for removing NFE Converter and Inverter units from drives supplied in Rittal TS8 enclosures. Alternate means of removal will be necessary for other types of enclosures.

14.Follow the instructions in publication PFLEX-IN005..., *Installation Instructions - Lifting & Mounting PowerFlex 700S and 700H Drives* (*Frame 10 - 14*), supplied with the new power structures, to lift the power structures off of the Maintenance Stand.


Installing the Inverter Unit

Install the Inverter unit in reverse order of removal. Refer to the publication PFLEX-IN006.., *Installation Instructions - PowerFlex 700S and 700H AC Drives*, for tightening torques of motor, DC bus input and ground connection terminations.

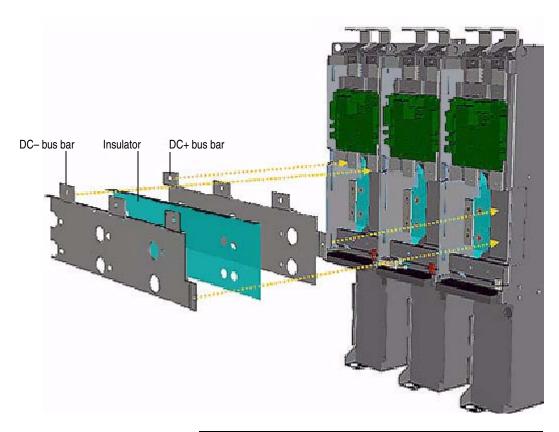

Removing the Fan Inverter Fuse Assemblies from the Inverters

There is a Fan Inverter Fuse assembly for each Main Cooling Fan in the Power structure.

- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- 2. Remove the protective covers. Refer to <u>Removing the Protective Covers</u> from the Inverters on page 3-42.
- **3.** If present, remove the protective screens. Refer to <u>Removing the</u> <u>Protective Screens from the Power Structure Enclosure on page 3-48</u>.
- 4. Remove the Fan Inverter Fuses from the fuse assembly.
- **5.** Disconnect the DC+ and DC- wire connectors from both ends of the fuse assembly.

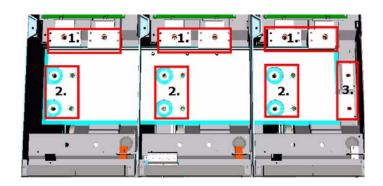
- **6.** Remove the M4 POZIDRIV screw that secures the fuse holder and insulator to the fuse base and remove the fuse holder and insulator.
- **7.** Remove the two M4 POZIDRIV screws that secure the fuse base to the drive and remove the fuse base.

8. Repeat steps 4...7 for the remaining Fan Inverter Fuse assemblies.


Installing the Fan Inverter Fuse Assemblies on the Inverters

Install the Fan Inverter Fuse assemblies in reverse order of removal.

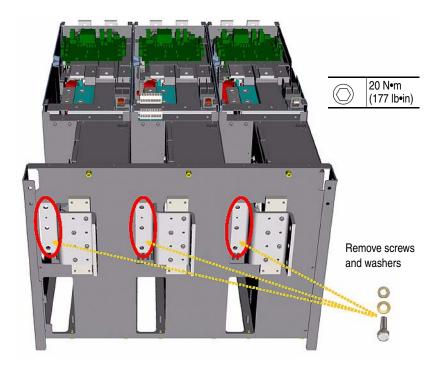
Removing the DC Connective Bus Bars from the Inverters


You must remove the DC Connective Bus Bars in order to remove the Inverters from the drive.

- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- 2. Remove the protective covers. Refer to <u>Removing the Protective Covers</u> from the Inverters on page 3-42.
- **3.** If present, remove the protective screens. Refer to <u>Removing the</u> <u>Protective Screens from the Power Structure Enclosure on page 3-48</u>.
- 4. Remove the ASIC circuit board. Refer to <u>Removing the ASIC Circuit</u> <u>Boards on page 3-44</u>.
- **5.** Remove the Fan Inverter Fuse assemblies. Refer to <u>Removing the Fan</u> Inverter Fuse Assemblies from the Inverters on page 3-61.

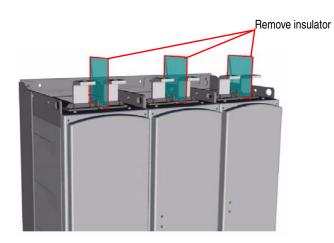
6. Remove the screws that secure the DC Connective Bus Bars and insulator to the Inverters.

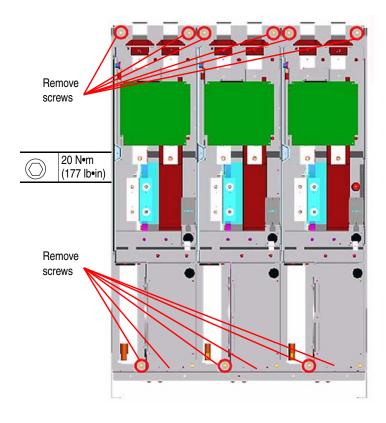
Location	Fasteners	Torque
1	M10 x 20 hexagonal screws, M10 spring washers and M10 washers	8 N•m (70 lb•in)
2	M8 x 25 hexagonal screws, M8 spring washers and M8 washers	8 N•m (70 lb•in)
3	M6 x 12 screws	4 N•m (35 lb•in)


Installing the DC Connective Bus Bars on the Inverters

Install the DC Connective Bus Bars in reverse order of removal.

Removing the Inverters from the Frame


Note: The Inverters are secured to a frame that is removed from the enclosure as a single unit. This unit must be removed from the enclosure before the individual Inverters and/or Output Power modules can be removed.


- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> <u>Drive on page 3-4</u>.
- 2. Remove the protective covers. Refer to <u>Removing the Protective Covers</u> from the Inverters on page 3-42.
- **3.** If present, remove the protective screens. Refer to <u>Removing the</u> <u>Protective Screens from the Power Structure Enclosure on page 3-48</u>.
- 4. Remove the Fan Inverter Fuse assemblies. Refer to <u>Removing the Fan</u> <u>Inverter Fuse Assemblies from the Inverters on page 3-61</u>.
- 5. Remove the DC Connective Bus Bars. Refer to <u>Removing the DC</u> <u>Connective Bus Bars from the Inverters on page 3-63</u>.
- 6. Remove the Air Flow Plate. Refer to <u>Removing the Air Flow Plate from</u> the Power Structure Enclosure on page 3-56.
- 7. Remove the Inverter unit. Refer to <u>Removing the Inverter Unit from the</u> <u>Enclosure on page 3-57</u>.

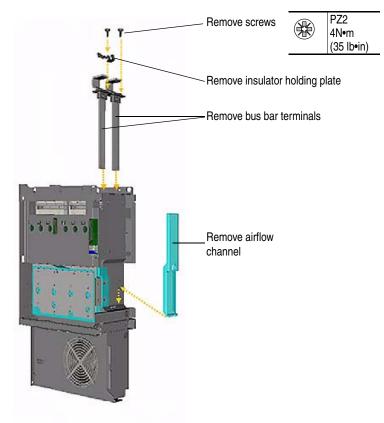
8. Remove the M10 x 25 hexagonal screws that secure the output power cables to the Output Power terminals.

9. Remove the insulator from between the DC Input Bus Bars.

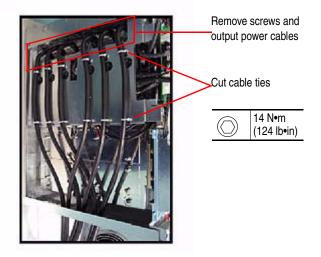
10.Remove the M8x20 hexagonal screws that secure the power module blocks to the drive frame.

11.Lift the Inverters off of the frame.

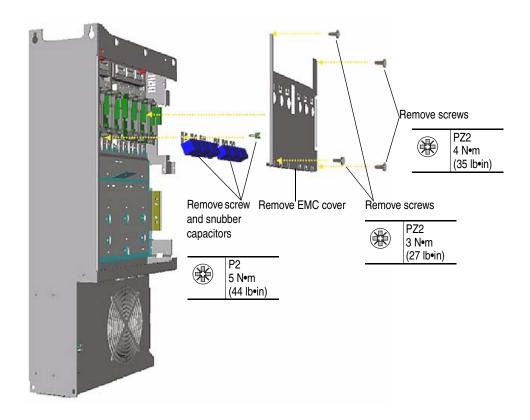
Installing the Inverters

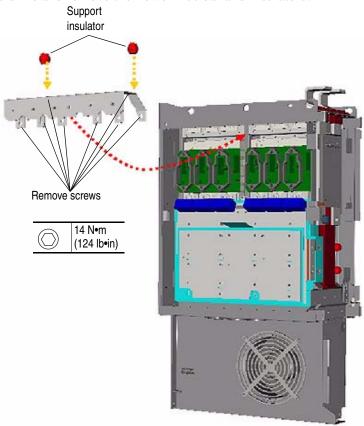

Install the Inverters in the reverse order of removal.

Removing the Output Power Modules from the Inverters

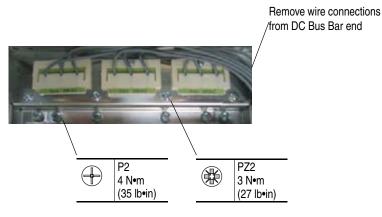

Important: Do not attempt to disassemble the Output Power modules.

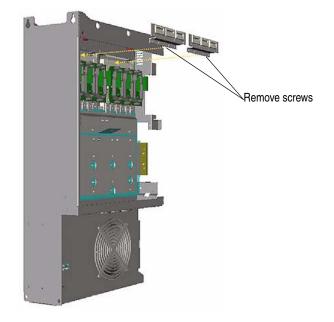
- **Important:** Always replace all three Output Power modules (do not replace just one module).
- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> Drive on page 3-4.
- 2. Remove the protective covers. Refer to <u>Removing the Protective Covers</u> from the Inverters on page 3-42.
- **3.** If present, remove the protective screens. Refer to <u>Removing the</u> <u>Protective Screens from the Power Structure Enclosure on page 3-48</u>.
- Remove the Gate Driver Circuit Boards. Refer to <u>Removing the Gate</u> <u>Driver Circuit Boards on page 3-43</u>.
- 5. On the V Phase Inverter only, remove the ASIC Circuit Board. Refer to Removing the ASIC Circuit Boards on page 3-44.
- 6. Remove the Fan Inverter Fuse assemblies. Refer to <u>Removing the Fan</u> <u>Inverter Fuse Assemblies from the Inverters on page 3-61</u>.
- 7. Remove the DC Connective Bus Bars. Refer to <u>Removing the DC</u> <u>Connective Bus Bars from the Inverters on page 3-63</u>.
- **8.** Remove the Air Flow Plate. Refer to <u>Removing the Air Flow Plate from</u> the Power Structure Enclosure on page 3-56.
- **9.** Remove the Inverter unit. Refer to <u>Removing the Inverter Unit from the</u> Enclosure on page 3-57.
- **10.**Remove the Inverters. Refer to <u>Removing the Inverters from the</u> <u>Frame on page 3-65</u>.
- **11.**On the V Phase Inverter only, remove the capacitor leads from the DC Input Bus Bars at the top of the Inverter.


- 12.Remove the insulator holding plate from between the Bus Bar terminals.
- **13.**Remove the M5 POZIDRIV screws that secure the Bus Bar terminals to the power structure.
- 14.Slide the Bus Bar terminals out of the frame.
- 15.Remove the bus bar Airflow Channel from the frame.

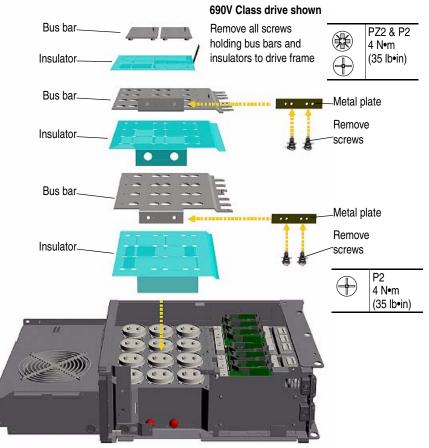


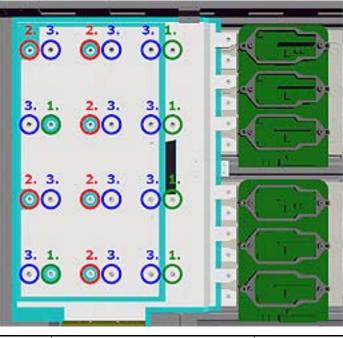
- **16.**Remove the M8x20 hexagonal screws that secure the output power cables to the output power bus bar.
- **17.**Cut and remove the cable ties that secure the output power cables to the EMC cover plate and remove the cables.


- **18.**Remove the M5x10 POZIDRIV and M4x8 POZIDRIV screws that secure the EMC cover to the drive and remove the cover.
- **19.**Remove the screws that secure the Snubber Capacitors to the Output Power module and remove the Snubber Capacitors.


20.Remove the screws that secure the Power Bus Bar and support insulators to the drive and remove the Power Bus bar and insulators.

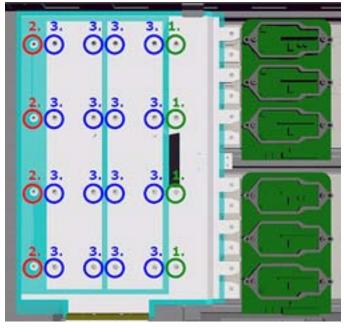
21.Disconnect the Balancing Resistor wires from the Main DC Bus Bars.



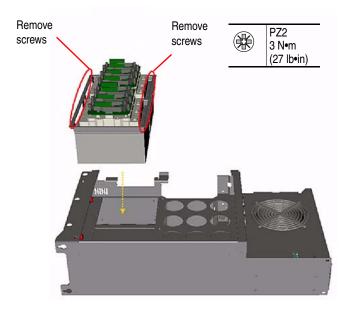

Balancing resistor assembly screws

22.Remove the screws that secure the Balancing Resistor assemblies to the Output Power modules and remove the Balancing Resistor assemblies (see previous illustration for screw locations).

23.Remove the M4x8 screws that secure the Main DC Bus Bars and insulators to the drive and remove the Main DC Bus Bars and insulators.



Bus Bar fastening screw locations - 400/480V drive:

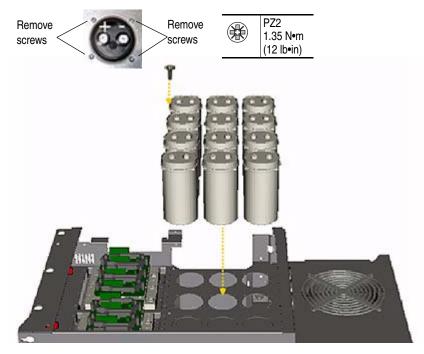

Location	Fasteners	Torque
1	M6 x 20 screws	4 N•m (35 lb•in)
2	M6 x 16 screws	4 N•m (35 lb•in)
3	M6 x 25 screws and M6 washers	4 N•m (35 lb•in)

Bus Bar fastening screw locations - 600/690V drive:

Location	Fasteners	Torque
1	M6 x 20 screws	4 N•m (35 lb•in)
2	M6 x 16 screws	4 N•m (35 lb•in)
3	M6 x 25 screws and M6 washers	4 N•m (35 lb•in)

24.Remove the M4x8 screws that secure the Output Power module to the drive and remove the Output Power module.

25.Repeat steps 11...24 for the remaining Output Power module(s).


Installing the Output Power Modules

- Install the Output Power module in reverse order of removal.
- Run the <u>Performing the Power Circuit Diagnostic Test on a 700S</u> Drive on page 4-3 before running the drive.

Removing the DC Bus Capacitors from the Inverters

- 1. Remove power from the drive. Refer to <u>Removing Power from the</u> Drive on page 3-4.
- 2. Remove the protective covers. Refer to <u>Removing the Protective Covers</u> from the Inverters on page 3-42.
- **3.** If present, remove the protective screens. Refer to <u>Removing the</u> <u>Protective Screens from the Power Structure Enclosure on page 3-48</u>.
- 4. Remove the Gate Driver Circuit boards. Refer to <u>Removing the Gate</u> <u>Driver Circuit Boards on page 3-43</u>.
- 5. On the V Phase Inverter only, remove the ASIC Circuit Board. Refer to Removing the ASIC Circuit Boards on page 3-44.

- 6. Remove the Fan Inverter Fuse assemblies. Refer to <u>Removing the Fan</u> <u>Inverter Fuse Assemblies from the Inverters on page 3-61</u>.
- 7. Remove the DC Connective Bus Bars. Refer to <u>Removing the DC</u> <u>Connective Bus Bars from the Inverters on page 3-63</u>.
- **8.** Remove the Air Flow Plate. Refer to <u>Removing the Air Flow Plate from</u> <u>the Power Structure Enclosure on page 3-56</u>.
- **9.** Remove the Inverter unit. Refer to <u>Removing the Inverter Unit from the</u> <u>Enclosure on page 3-57</u>.
- **10.**Remove the Inverters. Refer to <u>Removing the Inverters from the</u> <u>Frame on page 3-65</u>.
- **11.**Remove the four M4x8 screws that secure each of the capacitors to the power structure, and remove the capacitors.

Installing the DC Bus Capacitors in the Inverters

Install the capacitors in reverse order of removal.

Notes:

Start-Up After Repair

For information on	See page
Loading the 700H EEPROM	<u>4-1</u>
Before Applying Power to the Drive	<u>4-2</u>
Testing Without a Motor	<u>4-2</u>
Performing the Power Circuit Diagnostic Test on a 700S Drive	<u>4-3</u>
Testing With the Motor Without a Mechanical Load	<u>4-4</u>

ATTENTION: Power must be applied to the drive to perform the following start-up procedure. Some of the voltages present are at incoming line potential. To avoid electric shock hazard or damage to equipment, only qualified service personnel should perform the following procedure. Thoroughly read and understand the procedure before beginning. If an event does not occur while performing this procedure, Do Not Proceed. Remove Power including user supplied control voltages. User supplied voltages may exist even when main AC power is not applied to then drive. Correct the malfunction before continuing.

Loading the 700H EEPROM

If you replace the Output Power Modules or Control Board in a 700H drive you must load information about the Power Modules or Control Board into the Power EEPROM. Contact Allen-Bradley Drives Technical Support for instructions and software tools for performing this operation.

Phone	United States/ Canada	1.262.512.8176 (7 AM - 6 PM CST) 1.440.646.5800 (24 hour support)
	Outside United States/Canada	You can access the phone number for your country via the Internet: Go to http://www.ab.com Click on <i>Support</i> (http:// support.rockwellautomation.com/) Under <i>Contact Customer Support</i> , click on <i>Phone</i> <i>Support</i>
Internet	\Rightarrow	Go to http://www.ab.com/support/abdrives/
E-mail	\Rightarrow	support@drives.ra.rockwell.com

Be prepared to provide the following information when you contact support:

- Product Catalog Number
- Product Serial Number
- Firmware Revision Level

Before Applying Power to the Drive	1. Check the DC bus voltage at the Power Terminal Block by measuring between the +DC and -DC terminals, between the +DC terminal and the chassis, and between the -DC terminal and the chassis. The voltage must be zero for all three measurements.
	2. Perform forward and reverse biased diode tests, using a digital multimeter. Refer to <u>Conducting Forward and Reverse Biased Diode</u> <u>Tests for Major Power Components on page 2-2</u> .
Testing Without a Motor	This test allows you to measure several operating parameters and diagnose problems without connecting the motor to the drive.
	1. Verify that the input power wiring and grounding is connected.
	1. Verify that the motor cables are disconnected.
	2. Energize the drive.
	3. Measure the DC bus voltage and verify that the value is reflected in:
	- parameter 306 [DC Bus Voltage] (700S)
	- parameter 012 [DC Bus Voltage] (700H)
	4. Make configuration changes that allow the HIM to issue start and speed commands.
	5. Make configuration changes that allow operation without an encoder and motor.
	6. Start the drive, by pressing (the start button).
	7. Increase the speed command from zero to base speed, by pressing (the up button).
	8. Measure the output voltage on each phase and verify that it is balanced. If it is unbalanced troubleshoot the drive.
	9. Stop the drive, by pressing O (the stop button).
	10. Re-configure the drive to suit the application.

Performing the Power Circuit Diagnostic Test on a 700S Drive

The Power Circuit Diagnostic Test on the 700S drive allows you to diagnose problems in the drive's power structure without applying large amounts of power.

- 1. Verify that the input power wiring and grounding is connected.
- 2. Verify that the motor cables are connected.
- **3.** Energize the drive.
- 4. Measure the DC bus voltage and verify that the value is reflected in:
 - parameter 306 [DC Bus Voltage] (700S)
- 5. From the Monitor menu on the HIM press (the escape button) to navigate to the Main menu.
- 6. Press (the down button) to move the cursor to the Start-Up selection, and press (to select Start-Up. Then press (again to verify your intention to continue with the Start-Up menu.
- 7. Press (the down button) to move the cursor to Power Circuit Diagnostics (Pwr Circuit Diag), and press (June 1998) to select Power Circuit Diagnostics.
- **8.** Press **1** to begin the Power Circuit Diagnostic routine. Follow the indications and instructions displayed on the HIM.

Testing With the Motor Without a Mechanical Load

This test allows you to measure several operating parameters and diagnose problems without connecting the motor to its mechanical load.

- **1.** Verify that the input power wiring and grounding is connected.
- 2. Verify that the motor cables are connected.
- **3.** Verify that the motor load is disconnected.
- 4. Energize the drive.
- 5. Measure the DC bus voltage and verify that the value is reflected in:
 - parameter 306 [DC Bus Voltage] (700S)
 - parameter 012 [DC Bus Voltage] (700H)
- 6. Start the drive and increase the speed from zero to base speed.
- **7.** Measure drive output current and verify that the value is reflected in the following parameters:
 - 308 [Output Current] (700S)
 - 003 [Output Current] (700H)
- **8.** Stop the drive.

Service Tools and Equipment

For information on	See page
Software Tools	<u>A-1</u>
Service Tools	<u>A-1</u>

Software Tools DriveToolsTM SP, DriveExecutive, DriveExplorerTM and DriveObserverTM are software tools that can be used for uploading, downloading and monitoring system parameters.

Service Tools

The following list contains the basic service tools needed for repair and maintenance measurements.

Item	Description	Details
1	Oscilloscope	Portable, digitizing, dual channel scope, with isolation
2	Current clamp	1000A(ac, rms), signal output
3	Soldering station	Soldering / de soldering
4	Adjustable power supply	01300VDC, 1A, adjustable current limit. Efore LPS 750-HV or equivalent.
5	Adjustable power supply	0690VAC (+10%), 10A, three phase, galvanic isolation
6	Multimeter	Digital multi meter, capable of ac and dc voltage, continuity, resistance, capacitance measurements, and forward diode bias tests. Fluke model 87 III or equivalent.
7	Insulation tester	1000Vdc
8	Torque wrench	112Nm
9	Torque wrench	650Nm
10	Box wrench	7mm, 8mm, 10mm, 13mm, 17mm, 19mm, 22mm
11	Socket extension	230mm
12	Wrench	7mm, 8mm, 10mm, 13mm, 17mm, 19mm, 22mm
13	Allen wrench	
14	Wire cutter	
15	Nose pliers	
16	Crimping tools	For cable terminals 1,5240
17	Angle wrench	
18	Screw driver	
19	*Flat nose	7*2(mm)
20	*POZIDRIV	#1, 2, 3
21	*Phillips	#1, 2, 3
22	*Torx	#25
23	Hexagonal wrench	#4, 5, 6
24	ESD-protected place of work	Working surface, Floor covering, seat and ground connections
25	ESD-protective clothing	Wrist wrap, shoes, overall clothing (coat)

Item	Description	Details
26	Power supply (service)	Capacity of three phase service 400/500/690Vac, 30A
27	20-MAINSTND maintenance stand	Maintenance stand for removing power structure from drive cabinet
28	Fiber-optic repair kit	Agilent HFBR-4593 Polishing Kit, consisting of a Polishing Fixture, 600 grit abrasive paper and 3 mm pink lapping film (3M Company, OC3-14). For Agilent HFBR-4532 latching connectors and HFBR-RL cable. Refer to Agilent publications 5988-9777EN and 5988-3625EN.

Schematics

List of Schematic Diagrams

For a Schematic Diagram on	See page
Figure B.1: Circuitry Diagram for Drives with AC Input - Power Structure 1	<u>B-2</u>
Figure B.2: Circuitry Diagram for Drives with AC Input - Power Structure 2	<u>B-3</u>
Figure B.3: NFE Converter Unit Circuitry for Drives with AC Input	<u>B-4</u>
Figure B.4: Inverter Unit Circuitry for Drives with AC Input	<u>B-5</u>
Figure B.5: Main Fan Circuit for Drives with AC Input	<u>B-6</u>
Figure B.6: MCCB Circuit Breaker Circuitry for Drives with AC Input	<u>B-7</u>
Figure B.7: Circuitry Diagram for Drives with DC Input - Power Structure 1	<u>B-8</u>
Figure B.8: Circuitry Diagram for Drives with DC Input - Power Structure 2	<u>B-9</u>
Figure B.9: Inverter Unit Circuitry for Drives with DC Input	<u>B-10</u>
Figure B.10: Main Fan Connections for Drives with DC Input	<u>B-11</u>
Figure B.11: ASIC Circuit Board Connections	<u>B-12</u>
Figure B.12: Circuit Board Connections for 700S Drives with Phase II Control	<u>B-13</u>
Figure B.13: Circuit Board Connections for 700H Drives	<u>B-14</u>

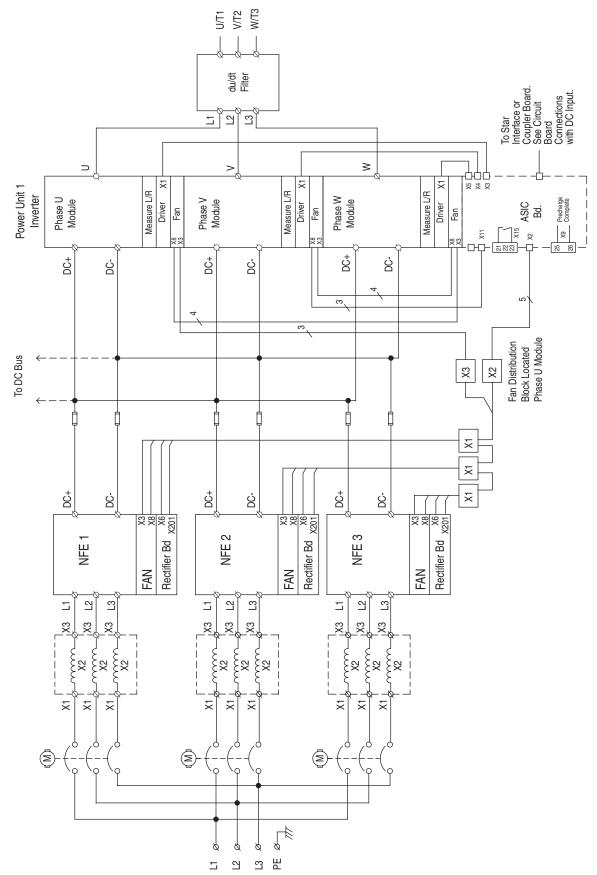


Figure B.1 Circuitry Diagram for Drives with AC Input - Power Structure 1

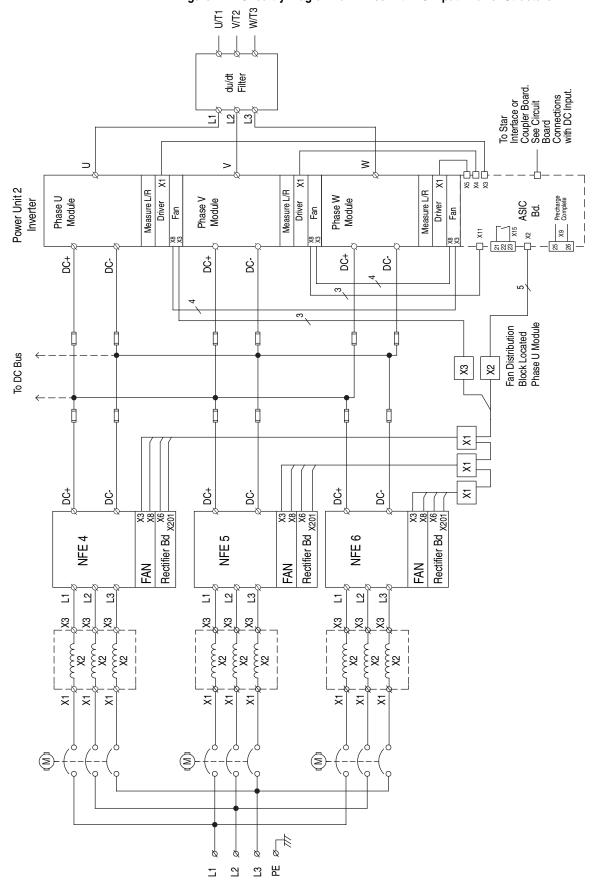
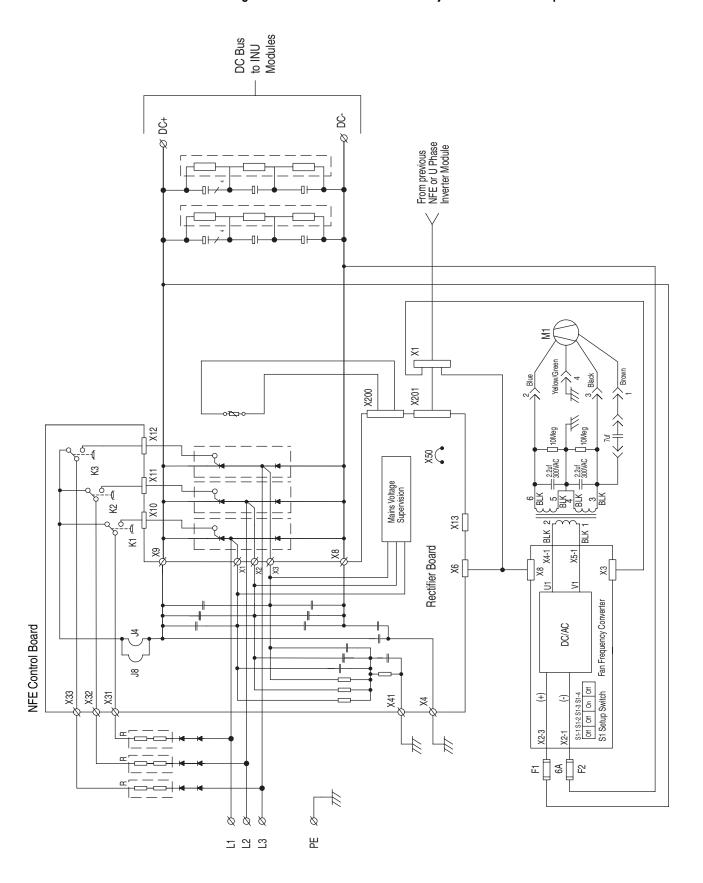
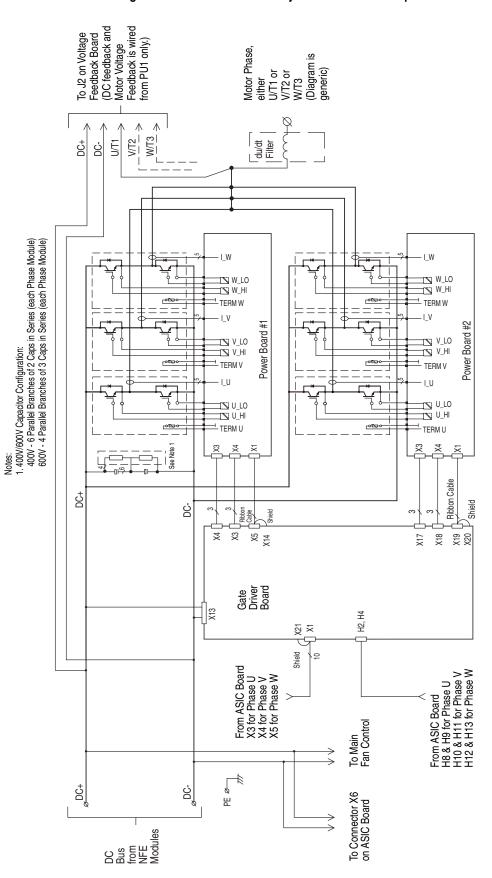




Figure B.2 Circuitry Diagram for Drives with AC Input - Power Structure 2

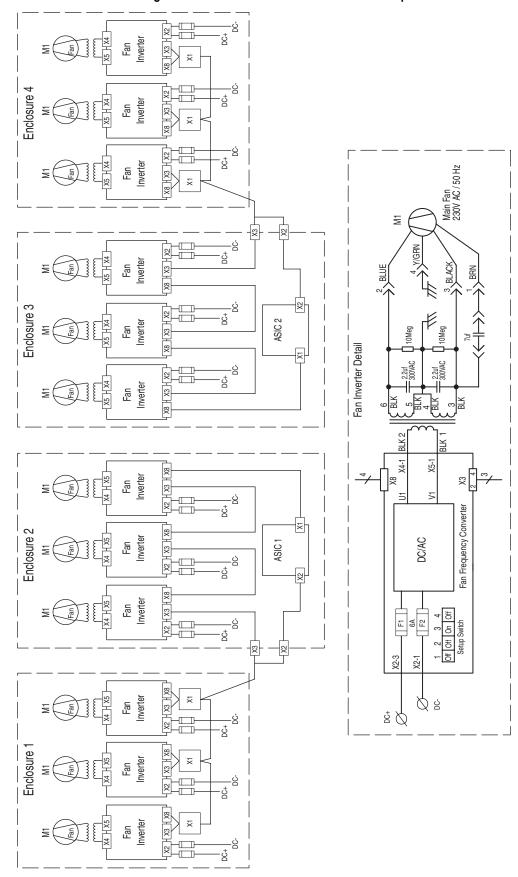


Figure B.5 Main Fan Circuit for Drives with AC Input

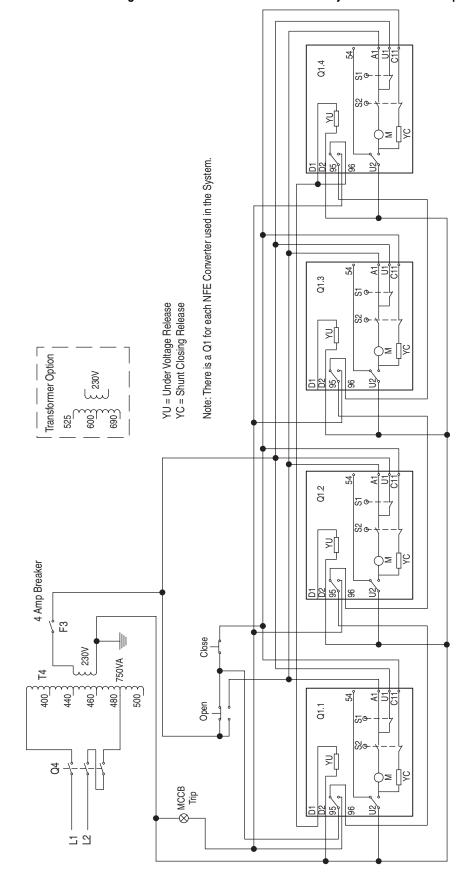


Figure B.6 MCCB Circuit Breaker Circuitry for Drives with AC Input

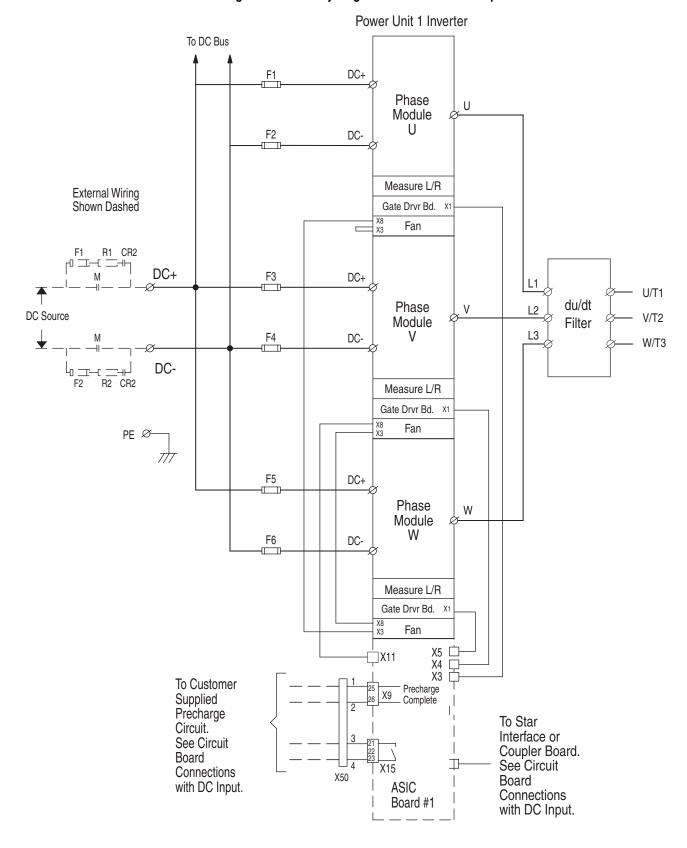


Figure B.7 Circuitry Diagram for Drives with DC Input - Power Structure 1

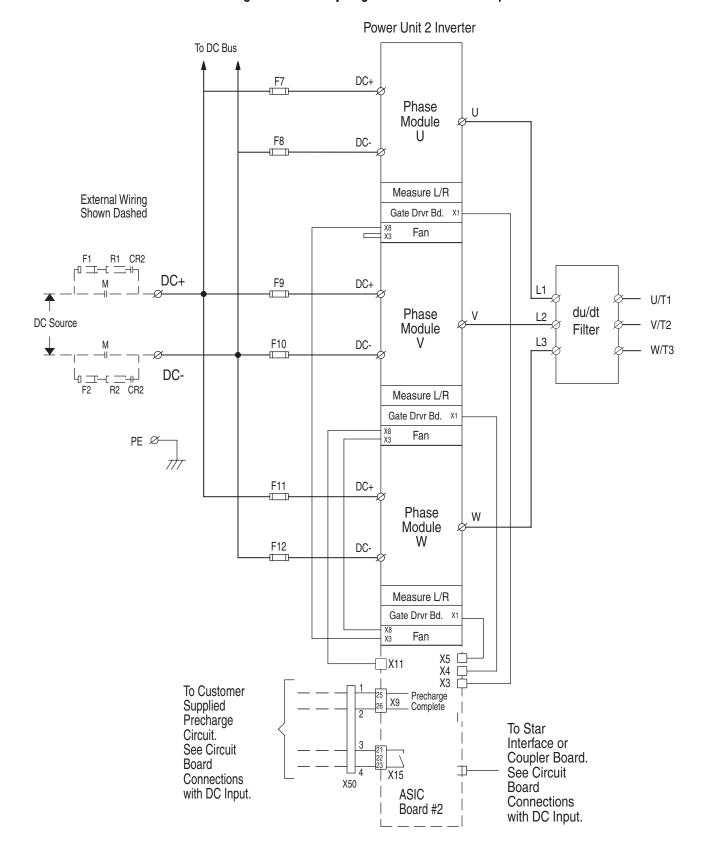


Figure B.8 Circuitry Diagram for Drives with DC Input - Power Structure 2

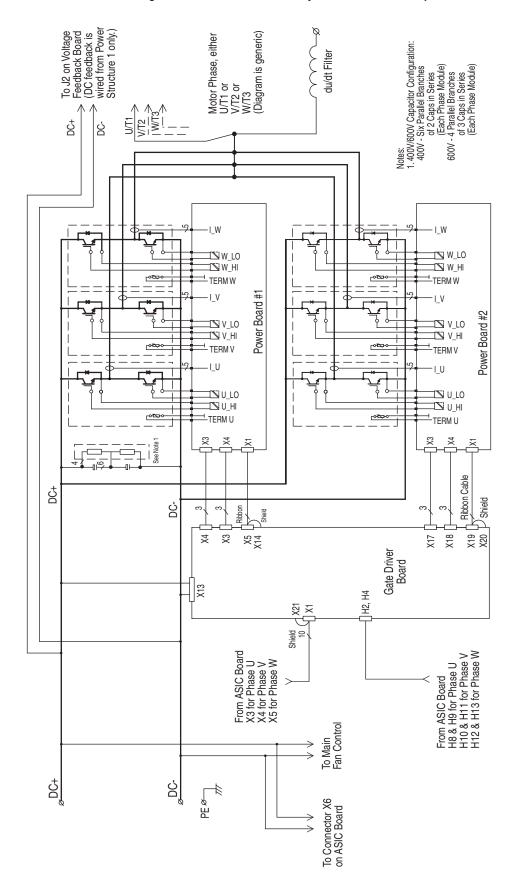


Figure B.9 Inverter Unit Circuitry for Drives with DC Input

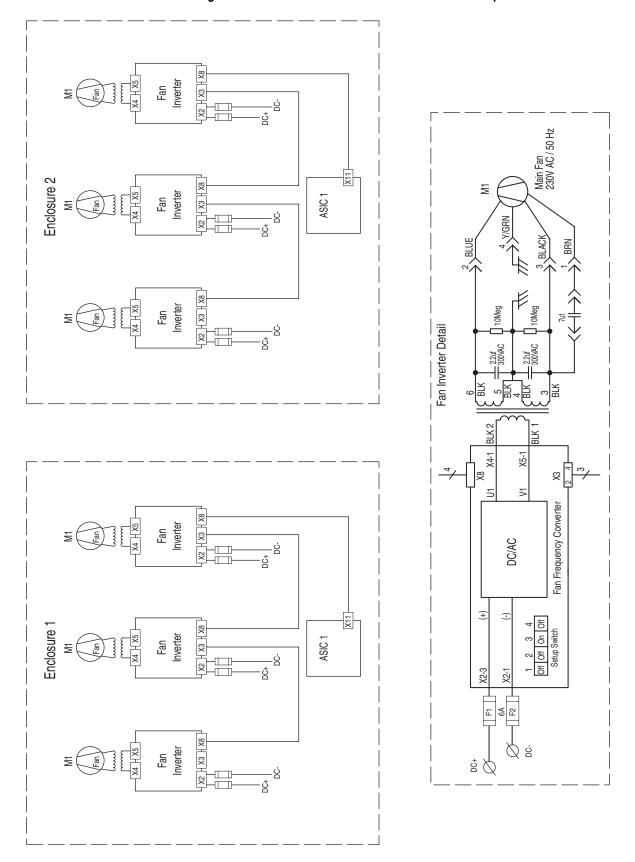
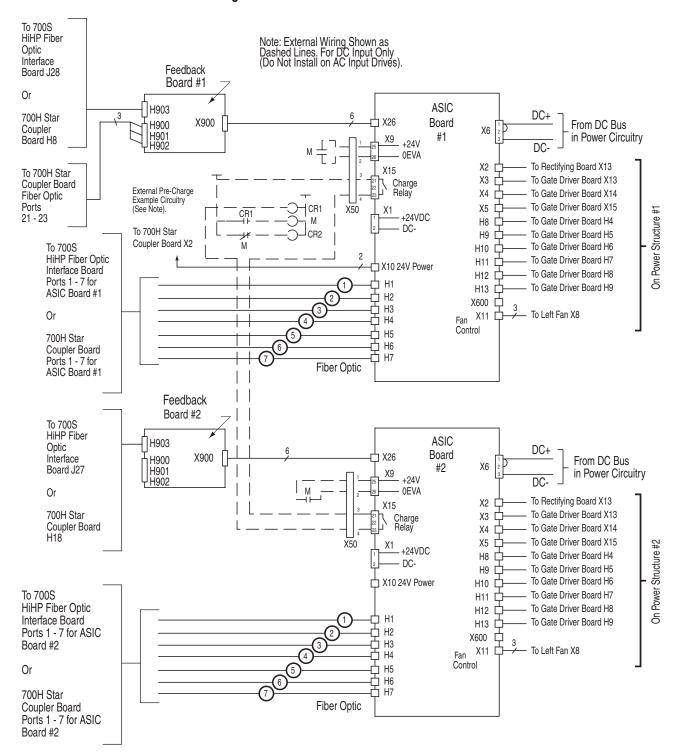



Figure B.10 Main Fan Connections for Drives with DC Input

Figure B.11 ASIC Circuit Board Connections

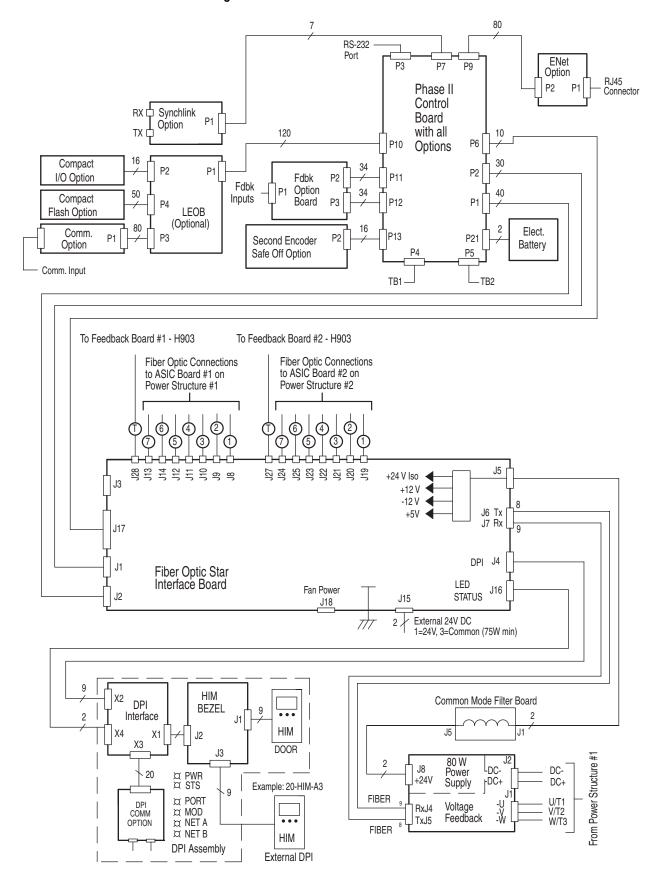


Figure B.12 Circuit Board Connections for 700S Drives with Phase II Control

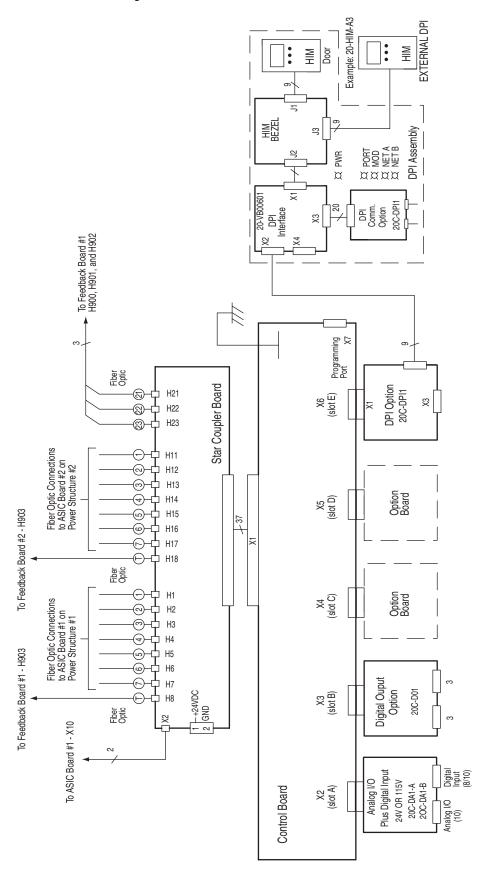
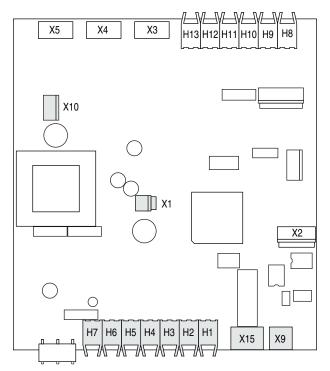


Figure B.13 Circuit Board Connections for 700H Drives


Connector Descriptions

For information on	See page
Circuit Board Connections	<u>C-1</u>
ASIC Board Connectors	<u>C-1</u>
Gate Driver Board Connectors	<u>C-2</u>
Rectifier/Precharge Circuit Board Connectors	<u>C-4</u>
PowerFlex 700H Fiber Optic Adapter Circuit Board Connectors	<u>C-4</u>
PowerFlex 700S Star Coupler Fiber Optic Interface Circuit Board Connectors	<u>C-5</u>
PowerFlex 700H Star Couple Circuit Board	<u>C-6</u>
ASIC Feedback Board Connectors	<u>C-7</u>
Hardware Connections	<u>C-8</u>
Fan Inverter Circuit Board Connectors	<u>C-8</u>
X50 Terminal Block Connectors	<u>C-10</u>

Circuit Board Connections

The following tables detail the connection points for the frame 14 PowerFlex 700S and 700H drives circuit boards and components.

Figure C.1 ASIC Board Connectors

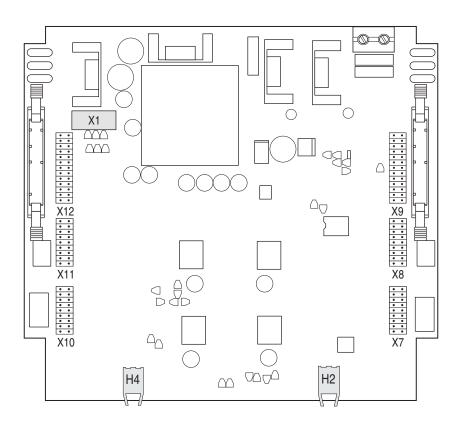


Table C.A ASIC Board to Gate Driver Board - Phase U Connections

From ASIC Board Connector - Pin	Signal Description	To Gate Driver Board Connector - Pin ⁽⁴⁾
X3-1	U_Feedback	X1-1
X3-2	U_Power_OK	X1-2
X3-3	U_DTR ⁽¹⁾	X1-3
X3-4	U_ETR ⁽²⁾	X1-4
X3-5	U_ITR ⁽³⁾	X1-5
X3-6	U_DC-	X1-6
X3-7	UI	X1-7
X3-8	U_DCI	X1-8
X3-9	U_TEMP	X1-9
X3-10	U_DC-T	X1-10
H8 (fiber optic)	UH or Gate Top	H2 (fiber optic)
H9 (fiber optic)	UL or Gate Bottom	H4 (fiber optic)

(1) DTR = N Desat

(2) ETR = Phase I²T

(3) ITR = Phase Overcurrent

 $^{\rm (4)}$ Cable labeled X13 at X1 connection on Gate Driver board for Phase U

From ASIC Board Connector - Pin	Signal Description	To Gate Driver Board Connector - Pin ⁽⁴⁾		
X4-1	V_Feedback	X1-1		
X4-2	V_Power_OK	X1-2		
X4-3	V_DTR ⁽¹⁾	X1-3		
X4-4	V_ETR ⁽²⁾	X1-4		
X4-5	V_ITR ⁽³⁾	X1-5		
X4-6	V_DC-	X1-6		
X4-7	VI	X1-7		
X4-8	V_DCI	X1-8		
X4-9	V_TEMP	X1-9		
X4-10	V_DC-T	X1-10		
H10 (fiber optic)	VH or Gate Top	H2 (fiber optic)		
H11 (fiber optic)	VL or Gate Bottom	H4 (fiber optic)		

Table C.B ASIC Board to Gate Driver Board - Phase V Connections

(1) DTR = N Desat

(2) ETR = Phase I²T

(3) ITR = Phase Overcurrent

 $^{\rm (4)}$ Cable labeled X14 at X1 connection on Gate Driver board for Phase V

Table C.C A	ASIC Board to	Gate Driver Board -	Phase W Connections
-------------	---------------	---------------------	---------------------

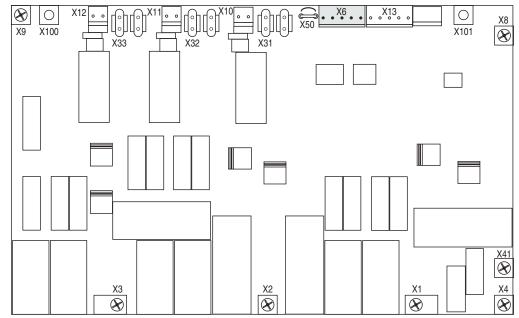
From ASIC Board Connector - Pin	Signal Description	To Gate Driver Board Connector - Pin ⁽⁴⁾
X5-1	W_Feedback	X1-1
X5-2	W_Power_OK	X1-2
X5-3	W_DTR ⁽¹⁾	X1-3
X5-4	W_ETR ⁽²⁾	X1-4
X5-5	W_ITR ⁽³⁾	X1-5
X5-6	W_DC-	X1-6
X5-7	WI	X1-7
X5-8	W_DCI	X1-8
X5-9	W_TEMP	X1-9
X5-10	W_DC-T	X1-10
H12 (fiber optic)	WH or Gate Top	H2 (fiber optic)
H13 (fiber optic)	WL or Gate Bottom	H4 (fiber optic)

(1) DTR = N Desat

(2) ETR = Phase I²T

(3) ITR = Phase Overcurrent

 $^{\rm (4)}$ $\,$ Cable labeled X15 at X1 connection on Gate Driver board for Phase W $\,$



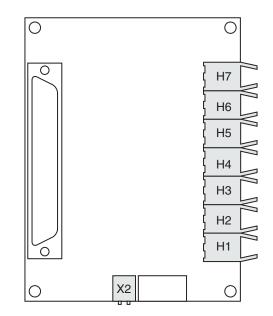
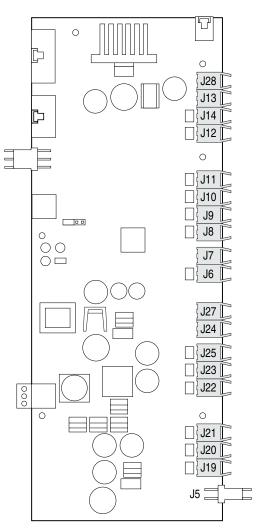
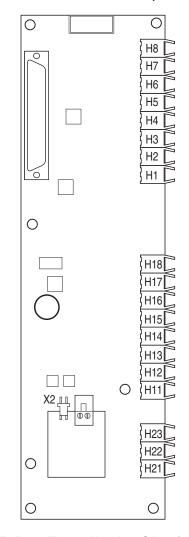

Figure C.3 Rectifier/Precharge Circuit Board Connectors

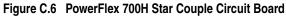
Table C.D ASIC Board to Rectifier/Precharge Circuit Board Connections

From ASIC Board Connector - Pin	Signal Description	Through Connector - Pin ⁽¹⁾	To Rectifier/Precharge Board Connector - Pin
X2-1	SWTS_DRV	X1-5	X6-1
X2-2	SWTS_FB	X1-6	X6-2
X2-3	W_DTR	X1-7	X6-3
X2-4	Mains Fault	X1-11	X6-4
X2-5	+24V	X1-12	X6-5

(1) The signals enter connector X1 for NFE1 and on to it's Rectifier/Precharge Circuit board, and also feeds connector X1 for NFE2 and onto it's Rectifier/Precharge Circuit board, and also feeds connector X1 for NFE3 and onto it's Rectifier/Precharge Circuit board (if present).

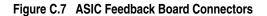


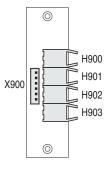

700H Fiber Optic Adapter Connector	Туре	Signal Description: Reference to ASIC Board	Туре	ASIC Board Fiber Connector ⁽¹⁾
H1	ΤX	Gate_Enable	RX	H1
H2	ΤX	U_Gate	RX	H2
H3	ΤX	V_Gate	RX	H3
H4	ΤX	W_Gate	RX	H4
H5	ΤX	A/D Convert	RX	H5
H6	ΤX	VBUS_RX	RX	H6
H7	RX	VBUS_TX	ТΧ	H7
X2	From	+24V DC Power	То	X10


Table C.E PowerFlex 700H Fiber Optic Adapter Board to ASIC Circuit Board Connections

⁽¹⁾ Refer to <u>Figure C.1 on page C-1</u> for ASIC board fiber-optic connectors.

Figure C.5 PowerFlex 700S Star Coupler Fiber Optic Interface Circuit Board Connectors


Interface Optic Co	Board Fiber				ASIC Board Fiber Connector	Description: Reference to ASIC
700H	700S	Туре	to	Туре	(1)	Board
H1	J8	ТΧ		RX	H1	Gate_Enable
H2	J9	ТΧ		RX	H2	U_Gate
H3	J10	ТΧ		RX	H3	V_Gate
H4	J11	ТΧ		RX	H4	W_Gate
H5	J12	ТΧ		RX	H5	A/D Convert
H6	J14	ТΧ		RX	H6	VBUS_RX
H7	J13	RX		ТΧ	H7	VBUS_TX


⁽¹⁾ Refer to <u>Figure C.1 on page C-1</u> for ASIC board fiber-optic connectors.

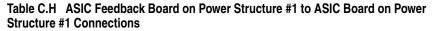
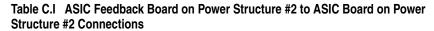

Interface Board Fiber Optic Connector							ASIC Board Fiber Connector	Description: Reference to ASIC
700H	700S	Туре	to	Туре	(1)	Board		
H11	J19	ΤX		RX	H1	Gate_Enable		
H12	J20	ТΧ		RX	H2	U_Gate		
H13	J21	ΤX		RX	H3	V_Gate		
H14	J22	ΤX		RX	H4	W_Gate		
H15	J23	ТΧ		RX	H5	A/D Convert		
H16	J25	ТΧ		RX	H6	VBUS_RX		
H17	J24	RX		ТΧ	H7	VBUS_TX		

Table C.G PowerFlex 700H and 700S Interface Board to ASIC Board on Power Structure #2 Fiber Optic Connections


⁽¹⁾ Refer to Figure C.1 on page C-1 for ASIC board fiber-optic connectors.

ASIC Feedback Board Connector	Pin	to	Pin	ASIC Board Connector	Description: Reference to ASIC Board
X900	1		1	X26	PHU
	2		2		PHV
	3		3		PHW
	4		4		Trip_Out
	5		5		+5V
	6		6]	+5V

ASIC Feedback Board Connector	Pin	to	Pin	ASIC Board Connector	Description: Reference to ASIC Board
X900	1		1	X26	PHU
	2		2		PHV
	3		3		PHW
	4		4		Trip_Out
	5		5		+5V
	6		6		+5V

Table C.J ASIC Feedback Board to PowerFlex 700S Star Coupler Fiber Optic Interface Board Connections

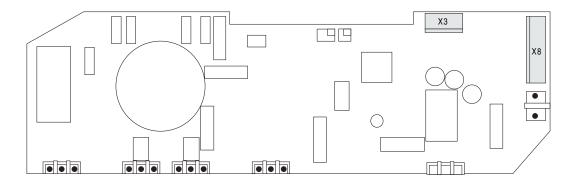

ASIC Feedback Board Connector		Description: Reference to Star Interface Board
H903 on Power Structure #1	 J28	Trip_P1
H903 on Power Structure #2	 J27	Trip_P2

Table C.K ASIC Feedback Board to PowerFlex 700H Star Coupler Board Connections

ASIC Feedback Board Connector	to	Star Coupler Board Connector	Description: Reference to Star Coupler Board
H900 on Power Structure #1		H21	PHU
H901 on Power Structure #1		H22	PHV
H902 on Power Structure #1		H23	PHW
H903 on Power Structure #1		H8	Trip_P1
H903 on Power Structure #2		H18	Trip_P2

Hardware Connections

Figure C.8 Fan Inverter Circuit Board Connectors

Table C.L ASIC Board - Phase V Fan Inverter Board Connections

ASIC Board Connector ⁽¹⁾		Pin Number	Signal Description		Pin Number	Phase V Fan Inverter Board Connector
X11	From	2	ASIC_+15V	To	2	X8
	From	3	FAN_CONTROL	То	3	
	То	4	FAN_ALARM	From	7	

⁽¹⁾ Refer to <u>Figure C.1 on page C-1</u> for ASIC board connectors.

Table C.M Phase V Fan Inverter Board - Phase W Fan Inverter Board Connections	Table C.M	Phase V F	an Inverter Boa	rd - Phase W	Fan Inverter	Board Connections
---	-----------	-----------	-----------------	--------------	--------------	-------------------

Phase V Fan Inverter Board Connector		Pin Number	Signal Description		Pin Number	Phase W Fan Inverter Board Connector
X3	From	2	+15V	То	2	X8
	From	3	FAN_CONTROL NEXT	То	3	
	То	4	FAN_ALARM	From	7	

Phase W Fan Inverter Board Connector		Pin Number	Signal Description			Phase U Fan Inverter Board Connector
X3	From	2	+15V	То	2	X8
	From	3	FAN_CONTROL NEXT	То	3	
	То	4	FAN_ALARM	From	7	

Table C.N Phase W Fan Inverter Board - Phase U Fan Inverter Board Connections

Phase U Fan Inverter Board Connector		Pin Number	Signal Description	NFE 1 Connector - Pin		Pin Number	NFE 1 Fan Inverter Board Connector
X3	From	2	+15V	X1-8	To	2	X8
	From	3	FAN_CONTROL NEXT	X1-9	То	3	
	То	4	FAN_ALARM	X1-10	From	7	

NFE 1 Fan Inverter Board Connector		Pin Number	Signal Description		NFE 1 Connector - Pin		NFE 2 Connector - Pin		Pin Number	NFE 2 Fan Inverter Board Connector
X3	From	2	+15V	To	X1-2	То	X1-8	То	2	X8
	From	3	FAN_CONTROL NEXT	То	X1-3	То	X1-9	То	3	-
	То	4	FAN_ALARM	From	X1-13	From	X1-10	From	7	

Table C.Q NFE 2 Fan Inverter Board - NFE Converter 3 Fan Inverter Board Connections Inverter Board - NFE Converter 3 Fan Inverter Board

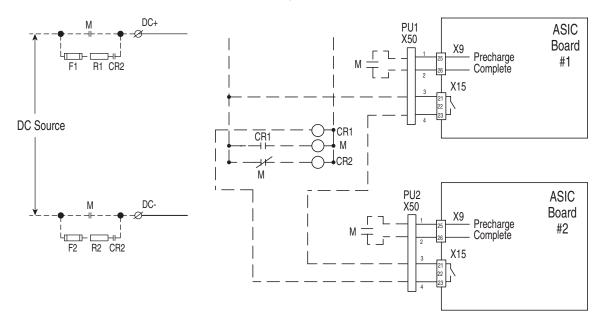

NFE 2 Fan Inverter Board Connector		Pin Number	Signal Description		NFE 2 Connector - Pin		NFE 3 Connector - Pin		Pin Number	NFE 3 Fan Inverter Board Connector
X3	From	2	+15V	То	X1-2	То	X1-8	То	2	X8
	From	3	FAN_CONTROL NEXT	То	X1-3	То	X1-9	То	3	
	То	4	FAN_ALARM	From	X1-13	From	X1-10	From	7	

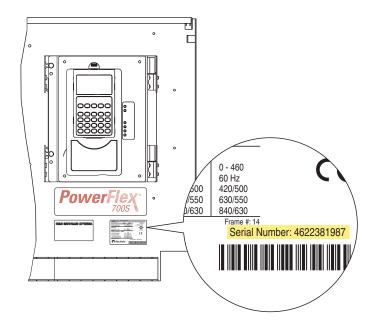
Table C.R	NFE Converter 3 Fan Inverter Board Connections
-----------	--

Signal	NFE 3 Fan Inverter Board Connector		Through NFE 3 Connector - Pin	Pin		Signal Description
+15V	X3	2	X1-2	4	X3	FAN_ALARM
FAN_ALARM		4	X1-13	2		+15V

Figure C.9 X50 Terminal Block Connectors

External precharge circuitry is shown as dashed lines.

Table C.S X	(50 Terminal Bl	ock Precharge	Circuit Connections
-------------	-----------------	---------------	----------------------------


ASIC Board Connector	Terminal	to	X50 Terminal Block	Description
Power Modu	le 1			·
X9 on ASIC	25		1	Precharge Complete Signal (+24V DC)
Board #1	26		2	Precharge Complete Signal (Common)
X15 on ASIC Board #1	21		3	Charge Relay Contact (Jumper to Power Module 2 Terminal 4)
	23		4	Charge Relay Contact
Power Modu	le 2			•
X9 on ASIC	25		1	Precharge Complete Signal (+24V DC)
Board #2	26		2	Precharge Complete Signal (Common)
X15 on ASIC	21		3	Charge Relay Contact
Board #2	23		4	Charge Relay Contact (Jumper to Power Module 1 Terminal 21)

For a Diagram on	See page
Power Structure Assembly	<u>D-2</u>
Power Structure Block Assembly	<u>D-3</u>
Rectifying Structure Assembly	<u>D-4</u>
Rectifying Structure Block Assembly	<u>D-5</u>
Fan Inverter Assembly for Power Structure	<u>D-6</u>
ASIC Assembly	<u>D-7</u>

Disassembly/Assembly Diagrams and Spare Parts Numbers

Diagrams on the following pages illustrate disassembly and assembly of the drive and its sub-systems and are followed by a list of spare part numbers where applicable.

When ordering spare parts, you must provide the serial number of the drive. The serial number is located on the data nameplate on the Control Frame just above the bar code.

A complete list of spare parts for PowerFlex 700S drives is available on the Allen-Bradley web site at:

http://www.ab.com/support/abdrives/powerflex70/PF7ReleasedParts.pdf

Figure D.1 Power Structure Assembly

ATTENTION: The sheet metal cover and mounting screws on the ASIC Board located on the power structure are energized at (-) DC bus potential high voltage. Risk of electrical shock, injury, or death exists if someone comes into contact with the assembly.

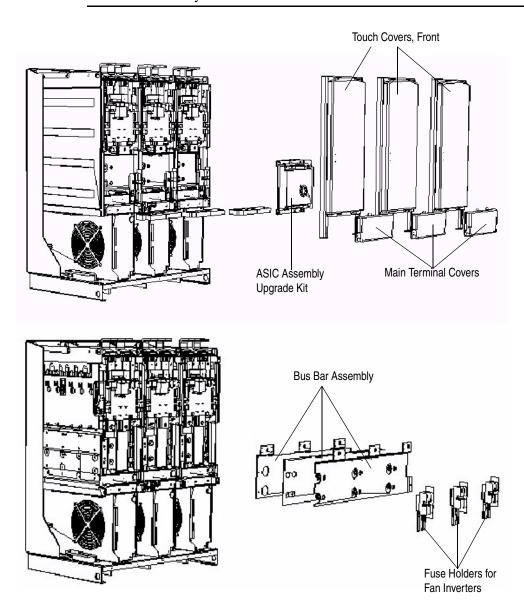


Table D.A Power Structure Assembly Part Numbers

Part Name	Part No.
ASIC Assembly Upgrade Kit (without ASIC Board)	20-FR10850
Bus Bar Assembly	NA
Fuse Holders for Fan Inverters	20-PP20300
Main Terminal Covers	NA
Touch Covers, Front	NA

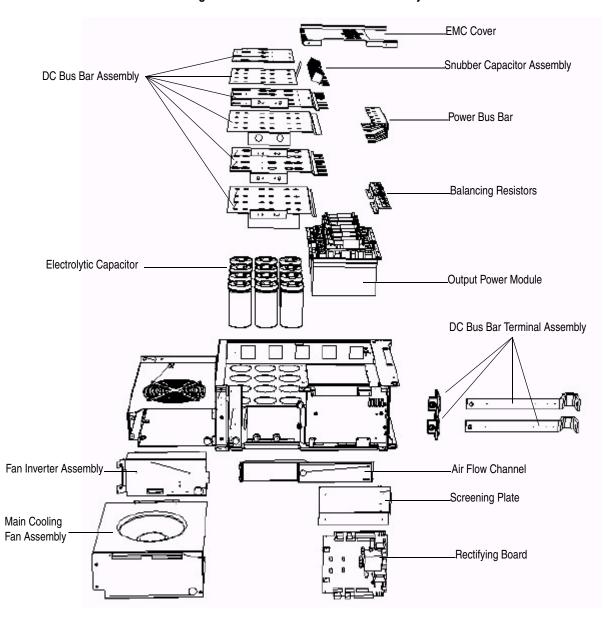


Figure D.2 Power Structure Block Assembly

Part Name		Part No.
Air Flow Channel	NA	
Balancing Resistors		NA
DC Bus Bar Assembly		NA
DC Bus Bar Terminal Ass	embly	NA
Electrolytic Capacitor	ELKO 3300µf 420V for 400/480V Drives	20-PP01005
	ELKO 5600µf 420V for 600/690V Drives	20-PP01099
EMC Cover		NA
Fan Inverter		20-FI13301
Gate Driver Board	400/480V	SK-H1-GDB1-F13D
	600/690V	SK-H1-GDB1-F13E
Main Cooling Fan Assem	bly	20-FI13300

Part Name		Part No.
Output Power Module	400/480V	NA
	600/690V	NA
Power Bus Bar		NA
Screening Plate (for Gate	Driver Board)	NA
Snubber Capacitor Assem	bly	NA

Figure D.3 Rectifying Structure Assembly

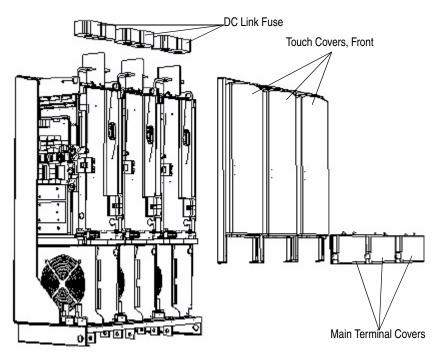
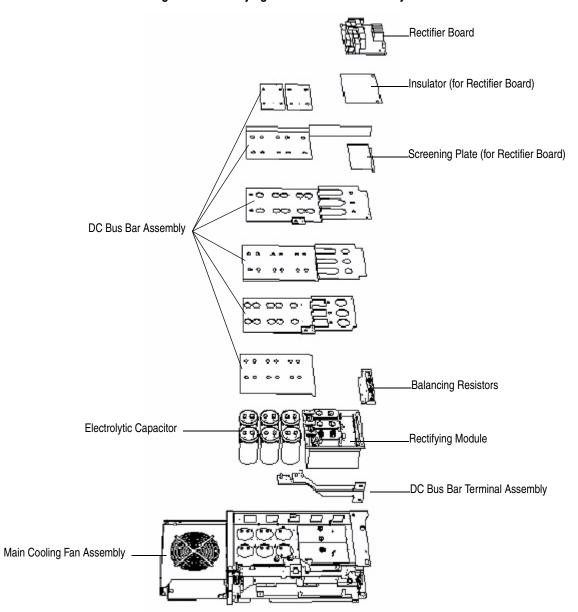



Table D.C Rectifying Structure Assembly Part Numbers

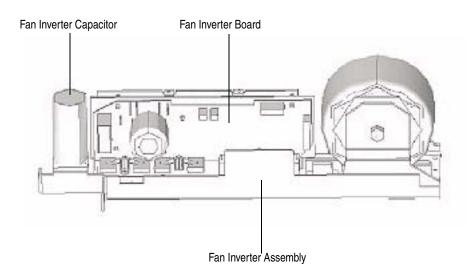

Part Name		Part No.	
DC Link Fuse	400/480V	1770A	
		2150A	SK-H1-SFUSE1-F13
		2700A	
	600/690V	1500A	
		1900A	SK-H1-SFUSE2-F13
		2250A	
Main Terminal Covers			NA
Touch Covers, Front			NA

Figure D.4 Rectifying Structure Block Assembly

Part Name		Part No.	
Balancing Resistors		NA	
DC Bus Bar Assembly		NA	
DC Bus Bar Terminal Assemb	bly	NA	
Electrolytic Capacitor	ELKO 3300µf 420V for 400/480V Drives	20-PP01005	
	ELKO 5600µf 420V for 600/690V Drives	20-PP01099	
Insulator (for Rectifier Board)		NA	
Main Cooling Fan Assembly		20-FI13300	
Rectifier (Precharge) Board	400/480V		
	600/690V	20-VB00462	
Rectifying Module	400/480V	20-FI13306	
	600/690V		
Screening Plate (for Rectifier	Board)	NA	

Figure D.5 Fan Inverter Assembly for Power Structure

Part Name	Part No.
Fan Inverter Assembly, Left	NA
Fan Inverter Board	20-FI13301
Fan Inverter Starting Capacitor 7µf 450V AC	20-PP0060

Figure D.6 ASIC Assembly

ATTENTION: The sheet metal cover and mounting screws on the ASIC Board located on the power structure are energized at (-) DC bus potential high voltage. Risk of electrical shock, injury, or death exists if someone comes into contact with the assembly.

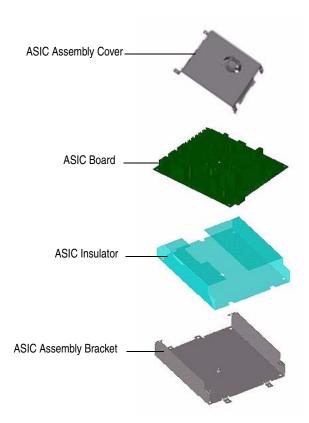


Table D.F ASIC Assembly Part Numbers

Part Name			Part No.		
ASIC Assembly Bracket	ASIC Assembly Bracket				
ASIC Assembly Cover	Included in 20-FR10850				
ASIC Assembly Insulator					
ASIC Board	400/480V	1770A	SK-H1-ASICBD-D1770		
		2150A	SK-H1-ASICBD-D2150		
		2700A	SK-H1-ASICBD-D2700		
	600/690V	1500A	SK-H1-ASICBD-E1500		
		1900A	SK-H1-ASICBD-E1900		
		2250A	SK-H1-ASICBD-E2250		

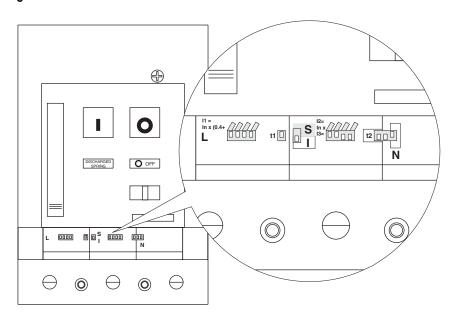
Notes:

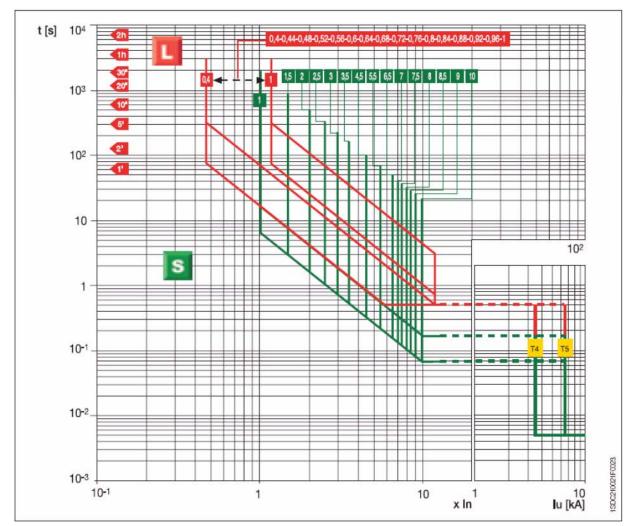
MCCB Circuit Breakers

For information on	See page
Circuit Breaker Protection Functions	<u>E-1</u>
Circuit Breaker Factory DIP Switch Settings	<u>E-2</u>
Trip Curves	<u>E-3</u>

Circuit Breaker Protection Functions

The circuit breakers (MCCB) used for frame 14 drives are equipped with electronic trip units. The trip units provide protection functions against overload L, and short-circuit S or I. With this version, you can choose between protection S or I simply by moving the DIP switch.


Figure E.1 Protection Function Settings


Protection functions		Trip the	Trip threshold		Trip curves ⁽¹⁾			
Against overload with long verse time delay trip and characteristic according to inverse time curve (I ^a t=const		0.5	I₁ = 0.40 - 0.44 - 0.48 - 0.52 - 0.56 - 0.60 - 0.64 - 0.68 - 0.72 - 0.76 - 0.80 - 0.84 - 0.88 - 0.92 - 0.96 - 1 x In		at 6 x I, t, = 6s only for T2		at 6 x I, t, = 12s only for T4, T5	
EXCLUDED			between 1.11.3 x I, 47-2 and UL 489)	Tolerance:		o to 6 x ln; bove 6 x ln		
S	Against short-circuit with inverse short time delay trip and trip char- acteristic with inverse time		1,5 - 2 - 2,5 - 3 - 3,5 - 4,5 - 6,5 - 7 - 7,5 - 8 - 8,5 - 9 x In @	-	at 8 x In t ₂ = 0, 1s	at 8 x In t ₂ = 0,25s		
CAN BE EXCLUDED (Pt=constant) (selectable as an al- ternative to protection function I)	Tolerance	e: ± 10% (T4-T5) ± 10% up to 2 x ln (T2) ± 20% above 2 x ln (T2)			± 10% up to 6 ± 20% above ± 20% (T2)			
CAN BE EXCLUDED	Against short-circuit with instan- taneous trip (selectable as an alternative to protection func- tion S)	5,5 10	1,5 - 2 - 2,5 - 3 - 3,5 - 4,5 - 6,5 - 7 - 7,5 - 8 - 8,5 - 9 x In (9) x ± 10% (T4-T5) ± 20% (T2)		istan	taneous		
	s hold in the following conditions:	In conditi	ons other than those considered, th	e following toleran	ces hold:			
- self-powered re	elay at full power and/or auxiliary supply; hase power supply.		Trip time					
- two or three-pr	iese power auppry.	S	± 20 %					
		1	≤ 40ms					

Circuit Breaker Factory DIP Switch Settings

			L			S/I		Ν	l
Voltage Class	Amp Rating	Per Drive	11	t1	S/I	13	t2	ON/OFF	50% / 100%
400V/480V AC	1770	4	0.76	3s	S	1.5	0.1s	OFF	na
	2150	4	0.92	3s	S	1.5	0.1s	OFF	na
600V/690V AC	1500	3	0.88	3s	S	1	0.1s	OFF	na
	1900	4	0.84	3s	S	1	0.1s	OFF	na
	2250	4	0.96	3s	S	1.5	0.1s	OFF	na

Figure E.2 Circuit Breaker Switch Locations

Trip Curves

Figure E.3 L-S Functions

Note: For In = 600 A => $I_2max = 9.5 x In$

Notes:

Numerics

700H Faults 1-11 700S Drive Status Indicators 1-2 Faults 1-4

A

Anlg In Loss Fault 1-12 ASIC Feedback Board Connectors C-7 AutoReset Lim Fault 1-12 AutoT Enable Fault 1-14 AutoT Lm Rot Fault 1-14 AutoT MagRot Fault 1-14 AutoT Rs Stat Fault 1-13 AutoT Saturat Fault 1-14 Auxiliary In Fault 1-11

В

BipolarCnflct Fault 1-15 BrakResMissing Fault 1-12

С

CAN Bus Flt Fault 1-13 Checking Fan Inverter Fuses 2-11 Checking the Fan Inverter LEDs 2-10 Checking the Main Fan Motors 2-15 Checking the Rectifying Modules (on AC Input Drives Only) 2-8 Circuit Board Connections C-1 Conducting Gate Driver Board Gate Interface Resistance Measurements 2-6 Creating Fault Reports 1-4

D

Decel Inhibit Fault 1-12 De-energizing the Drive 3-4 Device Add Fault 1-13 Device Change Fault 1-13 Diagnostic LEDs 700H 1-3 700S 1-1 DigIn CnflctA Fault 1-14 DigIn CnflctB Fault 1-15 DigIn CnflctC Fault 1-15 Diode Tests Forward Biased 2-2 Reverse Biased 2-2

F

Fan Cooling Fault **1-12** Fan Inverter DIP Switch Settings **2-11** Fatal App Fault **1-14** Faults Anlg In Loss 1-12 AutoReset Lim 1-12 AutoT Enable 1-14 AutoT Lm Rot 1-14 AutoT MagRot 1-14 AutoT Rs Stat 1-13 AutoT Saturat 1-14 Auxiliary In 1-11 BipolarCnflct 1-15 BrakResMissing 1-12 CAN Bus Flt 1-13 Decel Inhibit 1-12 Device Add 1-13 Device Change 1-13 DigIn CnflctA 1-14 DigIn CnflctB 1-15 DigIn CnflctC 1-15 Fan Cooling 1-12 Fatal App 1-14 Gate Disable 1-13 Ground Fault 1-11 Hardware Enbl 1-13 HeatsinkOvrTp 1-11 HeatsinkUndTp 1-13 Hrdwr Therm 1-13 I/O Change 1-14 I/O Comm Loss 1-14 I/O Removed 1-13 IGBT OverTemp 1-11 IGBT Temp HW 1-12 Input Phase 1-12 IntDB OvrHeat 1-15 InverterFault 1-11 Load Loss 1-12 MaxFregCnflct 1-12 MCB-PB Config 1-14 MicroWatchdog 1-12 Motor Stall 1-11 Motor Therm 1-12 MotorOverload 1-11 New IO Option 1-14 NP Hz Cnflct 1-12 NvsReadChksum 1-13 OutPhasMissng 1-12 OverCurrent 1-11 OverSpd Limit 1-12 OverVoltage 1-11 Param Chksum 1-14 ParamsDefault 1-13 Periph Loss 1-13

Port DPI Loss 1-13 Power Loss 1-11 Power Unit 1-13 PrechargeActv 1-11 PwrBrd Chksum 1-14 Shear Pin 1-13 Sleep Config 1-15 SpdRef Cnflct 1-12 Start AtPwrUp 1-15 System Fault 1-11 TB Man Conflict 1-15 Unbalanced 1-12 UnderVoltage 1-11 UserSet Timer 1-14 UserSetCflct 1-15 VHz Neg Slope 1-12 Waking 1-15 Zero Divide 1-13 Forward and Reverse Diode Test Measurement Points Inverter Units 2-4 Rectifying Units 2-3 Forward Biased Diode Test 2-2

G

Gate Disable Fault **1-13** General Precautions **P-3** Ground Fault **1-11**

Η

Hardware Connections **C-8** Hardware Enbl Fault **1-13** HeatsinkOvrTp Fault **1-11** HeatsinkUndTp Fault **1-13** Hrdwr Therm Fault **1-13**

I

I/O Change Fault 1-14
I/O Comm Loss Fault 1-14
I/O Removed Fault 1-13
IGBT OverTemp Fault 1-11
IGBT Temp HW Fault 1-12
Input Phase Fault 1-12
Inspecting the Cooling Tunnels and Heatsinks 2-1 Inspecting the Rectifying and Power Structures 2-2 IntDB OvrHeat Fault 1-15 InverterFault 1-11 Isolating a Faulty Fan Inverter on the Power Structure 2-14 Isolating a Faulty Fan Inverter on the Rectifying Structure 2-12

L

Load Loss Fault 1-12 Loading the 700H EEPROM 4-1

М

MaxFreqCnflct Fault 1-12 MCB-PB Config Fault 1-14 MCCB Circuit Breaker Settings E-1 Factory Switch Settings E-2 Trip Curves E-3 MicroWatchdog Fault 1-12 Motor Stall Fault 1-11 Motor Therm Fault 1-12 MotorOverload Fault 1-11 Moving the Control Frame 3-17

Ν

New IO Option Fault 1-14 NP Hz Cnflct Fault 1-12 NvsReadChksum Fault 1-13

0

OutPhasMissng Fault 1-12 OverCurrent Fault 1-11 OverSpd Limit Fault 1-12 OverVoltage Fault 1-11

Ρ

Param Chksum Fault 1-14 ParamsDefault Fault 1-13 Performing the Power Circuit Diagnostic Test on a 700S Drive 4-3 Performing Visual Drive Inspections 2-1 Periph Loss Fault 1-13 Port DPI Loss Fault 1-13 Power Loss Fault 1-11 Power Unit Fault 1-13 Powering Down 3-4 PrechargeActv Fault 1-11 PwrBrd Chksum Fault 1-14

R

Reference Materials P-2 Removing Power from the Drive 3-4 Removing the 700H Fiber Optic Adapter Circuit Board 3-14 Removing the 700H I/O Circuit Boards and Control Assembly 3-13 Removing the 700S Phase II Control Cassette 3-8 Removing the 700S Phase II Control Mounting Plate 3-12 Removing the Air Flow Plate from the Power Structure 3-56 Removing the Air Flow Plate from the Rectifying Structure 3-20 Removing the ASIC Circuit Board 3-44 Removing the Bus Capacitors from the Rectifying Structure 3-41 Removing the Common Mode Filter Circuit Board 3-10 Removing the DC Bus Capacitors from the Power Structure 3-74 Removing the DC Connective Bus Bars from the Power Structure 3-63 Removing the DPI / HIM Assembly 3-5 Removing the Fan Inverter Fuse Assemblies from the Power Structure 3-61 Removing the Fan Inverter Fuse Assemblies from the Rectifying Structur 3-24 Removing the Fan Inverters from the Power Structure 3-52 Removing the Fan Inverters from the Rectifying Structure 3-25 Removing the Gate Driver Circuit Boards 3-43 Removing the High Power Fiber Optic Interface Circuit Board 3-11 Removing the Main Cooling Fans from the Power Structure 3-51

Removing the Main Cooling Fans from the Rectifying Structure 3-21 Removing the Output Power Modules 3-68 Removing the Power Module Blocks from the Drive 3-65 Removing the Power Structure from the Drive Enclosure 3-57 Removing the Pre-Charging Resistors 3-23 Removing the Protective Covers from the Power Structure 3-42 Removing the Protective Covers from the Rectifying Structure 3-18 Removing the Protective Screens from the Power Structure 3-48 Removing the Protective Screens from the Rectifying Structure 3-19 Removing the Rectifying Module Blocks from the Drive 3-31 Removing the Rectifying Modules 3-34 Removing the Rectifying Structure from the Drive Enclosure 3-27 Removing the Voltage Feedback Circuit Board 3-49 Reverse Biased Diode Tests 2-2

S

Schematic Diagrams **B-1** Service Tools **A-1** Shear Pin Fault **1-13** Sleep Config Fault **1-15** Software Tools **A-1** Spare Parts **D-1** SpdRef Cnflct Fault **1-12** Start AtPwrUp Fault **1-15** Start-Up After Repair **4-1** System Fault **1-11**

Т

Take Resistance Measurements on the Rectifying Module 2-10
Taking Resistance Measurements on the Precharge Resistors 2-9
Taking Resistance Measurements on the Rectifying Circuit Board 2-9
TB Man Conflict Fault 1-15 Technical Support Options 1-25 What You Need When Calling 1-26 Wizards 1-25 Testing With the Motor Without a Mechanical Load 4-4 Testing Without a Motor 4-2 Turning the Drive Off 3-4

U

Unbalanced Fault 1-12 UnderVoltage Fault 1-11 UserSet Timer Fault 1-14 UserSetCflct Fault 1-15

V

VHz Neg Slope Fault **1-12** Viewing the 700H Diagnostic LED **1-3** Viewing the 700S Diagnostic LEDs **1-1**

W

Waking Fault 1-15

Х

X50 Terminal Block Connectors C-10

Ζ

Zero Divide Fault 1-13

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444 Europe/Middle East/Africa: Rockwell Automation, Vorstlaan/Boulevard du Souverain 36, 1170 Brussels, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640 Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846